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Abstract—Since Spectre’s initial disclosure in 2018, the diffi-
culty of mitigating speculative execution attacks completely in
hardware has led to the proliferation of several new variants
and attack surfaces in the past six years. Most of the progeny
build on top of the original Spectre attack’s key insight, namely
that CPUs can execute the wrong control flow transiently and
disclose secrets through side-channel traces when attempting
to alleviate control hazards, such as conditional or indirect
branches and return statements.

In this paper we go beyond (speculatively) affecting control
flow, and present a new data speculation primitive that stems
from microarchitectural optimizations designed to alleviate
data hazards. More specifically, we show that Apple CPUs
are equipped with a Load Address Predictor (LAP). The LAP
monitors past addresses from the same load instruction to
speculatively load a predicted address, which may incorrectly
point to secrets at rest (i.e., never architecturally read by the
CPU). Once the secret is retrieved, the LAP allows for a large
speculation window that suffices for an adversary to compute
on the secret, such as leaking it over a covert channel.

We demonstrate the LAP’s presence on recent Apple CPUs,
such as the M2, A15, and newer models. We then evaluate
the LAP’s implications on security by showing its capabilities
to read out-of-bounds, speculatively invoke rogue functions,
break ASLR, and compromise the Safari web browser. Here,
we leverage the LAP to disclose sensitive cross-site data (such
as inbox content from Gmail) to a remote web-based adversary.

1. Introduction

From the turn of the decade, there is a pivotal change
in the desktop computing market. Whereas x86 CPUs from
Intel and AMD had dominated the heavyweight CPU market
in the past, new lineages from Apple and Qualcomm using
the ARM architecture are emerging in market share. Over
the past few years, they have become formidable competitors
to the x86-based landscape, bringing equivalent or often
better performance at a fraction of the power consumption.

Another change brought about in recent computer tech-
nology is the rise of transient execution attacks (e.g., Spec-
tre [33] and Meltdown [36]), which exploit speculative and
out-of-order execution to leak information across security
domains [16, 31, 33, 34, 36, 40, 54, 61, 62, 64, 65, 66, 70,
71]. That is, nearly all currently known Spectre variants rely

on the CPU speculating on control hazards, encompassing
if-statements, indirect jumps, returns, and loops, specula-
tively diverting the CPU’s control flow into code gadgets
benefitting the attacker. Finally, Spectre has impacted nearly
all modern heavyweight CPU designs, including recent gen-
erations released by Intel, AMD, Apple and other vendors.

Next, to further increase performance, computer archi-
tects proposed speculating on data flows in addition to
control flow, aiming to alleviate data hazards encountered
during software execution [35, 47, 48, 56, 57, 69]. Here,
rather then waiting for the hazard to resolve, the CPU
attempts to predict the value of the data being accessed
and proceeds execution of younger instructions using the
predicted value. While some forms of such data specu-
lation have been observed in the wild, mainly through
data-dependent hardware prefetchers [18, 67], store-to-load
forwarding prediction [26], or floating point issues [52, 58],
much remains to be done to fully characterize all forms of
data speculation present on modern CPU platforms. Thus,
in this paper, we ask the following questions.

Are there additional data speculation mechanisms
present on modern CPUs? If so, what are the security
implications of such speculation?

1.1. Our Contributions

In this paper, we answer the first question in the affir-
mative. More specifically, to the best of our knowledge, we
document the first existence in the wild of a Load Address
Predictor (LAP), where the CPU predicts addresses of load
instructions based on prior addresses it had observed. In
case the predicted address is cached, the CPU speculatively
loads from the predicted address as opposed to the address
originally intended by the program. Once the value from
the predicted address is fetched, the CPU computes on it
transiently using arbitrary instructions that are downstream
in program code. Moreover, the speculation window is large
enough for the value to be transmitted using microarchi-
tectural side channels. Finally, we show that the LAP is
present on Apple’s M2-M4 CPUs for Macs and iPads, and
the closely related A15-A17 CPUs for iPhones.

Next, tackling the second question, we show the LAP is
exploitable and results in grave security consequences. We
first introduce Spectre-LAP, a transient 64-bit out-of-bounds
read primitive that founds a new lineage of speculative exe-
cution attacks on data flows. Building on this, we introduce
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SLAP, an end-to-end attack on Apple’s Safari web browser
capable of disclosing email content and browsing behavior
from an arbitrary target webpage to a remote adversary.
Discovering and Reverse Engineering the LAP. We start
by analyzing the CPU’s behavior on load instructions that
cannot be reordered, due to them having a read-after-write
dependency. On the M1 CPU, we observe no difference
in runtime whether the load addresses increment in strides
or not. However, we observe a drastic speedup on the M2
and M3 CPUs only when the load’s addresses are striding,
whereas their runtime to execute the non-striding loads
is similar to the M1. From this, we show that the LAP
mechanism is present on recent Apple CPUs.

Next, to reverse engineer the LAP, we design a primitive
that lets us observe its speculative behavior by causing a
misprediction and then recovering side-channel traces of
the resulting transient execution. Using this primitive, we
identify that the LAP needs to be trained on 500 or more
striding loads to activate reliably. When the LAP does acti-
vate, it speculatively loads from its predicted address, rather
than the address dictated by the program. In turn, when the
value from the predicted address arrives, we observe that the
CPU opens a deep speculation window (up to 600 cycles),
during which arbitrary computation can be performed on the
value. This window allows us to leak the contents of LAP-
predicted addresses via microarchitectural covert channels.
Finally, we also observe that the stride must be at most 255
bytes for the LAP to generate predictions, limiting the scope
of the LAP’s reach to this range.
Weaponizing the LAP. Now, we assume there is a
secret in the address space which the adversary cannot read.
While the speculation window is sufficient to leak the secret
value over a cache covert channel in principle, our primitive
from before would require the secret to be at most 255
bytes from the last training address in order for the LAP
to transiently load it. Therefore, we modify our primitive to
read from anywhere in the address space by adding another
layer of indirection (i.e., an additional pointer dereference).
More specifically, we write the address of the secret at a
memory location reachable by the LAP. Then, we trigger
an LAP prediction on this memory location, obtaining the
secret’s address under speculation. We then speculatively
dereference this address and leak the secret’s value using a
microarchitectural covert channel. This forms the basis for
Spectre-LAP. In addition, we show that Spectre-LAP can
not only divert data flow, but also control flow by branch-
ing to functions which never get invoked architecturally.
Finally, observing that Spectre-LAP only runs to completion
on mapped addresses, we use this phenomenon to defeat
Address Space Layout Randomization (ASLR) on macOS.
Orchestrating an Attack on Safari. We culminate our
findings by investigating the implications of data speculation
on web browser security. We port our primitive to mistrain
the LAP to JavaScript, where we discover that Safari’s
JavaScript engine exhibits behaviors that are favorable for
mistraining when dealing with string objects. This results
in a gadget that can disclose the content of out-of-bounds
JavaScript strings. However, as JavaScript’s lack of pointers

precludes us from using another level of indirection, the
reach of our LAP gadget is again limited to read 255
bytes. We sidestep this limitation by devising a new memory
massaging technique against Safari’s allocator, which lands
cross-origin DOM strings from the target webpage into the
attacker’s window. Finally, we orchestrate SLAP end-to-end,
causing the LAP to disclose sensitive content from Gmail,
Amazon, and Reddit when the target is authenticated.
Summary of Contributions. We contribute the following:
• We investigate the data speculation mechanisms on Apple

CPUs, discovering the LAP’s presence on recent genera-
tions. Next, we reverse engineer the LAP’s training and
activation criteria (Section 4).

• We demonstrate that speculation using the LAP can be
weaponized to achieve out-of-bounds reads anywhere in
the 64-bit address space, divert control flow under spec-
ulation, and break ASLR on macOS (Section 5).

• We build an out-of-bounds read primitive in the Safari
web browser which subverts Safari’s sandboxing and
side-channel countermeasures, leaking cross-origin con-
tent from sensitive websites (Section 6).

1.2. Responsible Disclosure

We disclosed our results to Apple on May 24, 2024.
Apple’s Product Security Team have acknowledged our
report and proof-of-concept code, requesting an extended
embargo beyond the 90-day window. At the time of writing,
Apple did not share any schedule regarding mitigation plans
concerning the results presented in this paper.

2. Background

Cache Organization on Apple Silicon. Like most vendors,
Apple CPUs use small on-chip buffers named caches to
reduce the disparity in speed between the core and mem-
ory subsystem. In addition, they feature a heterogeneous
core design with Performance (P) cores and Efficiency (E)
cores [5]. Both types of cores have private L1 caches and
shared L2 caches within a cluster of the same core type. The
caches are set-associative: they are partitioned into multiple
cache sets using part of the memory address, and data from
that address can fit into any of the cache ways in that set,
where each way contains a cache line.
Side-Channel Attacks on Caches. As the cache is shared
across all processes, an adversary on the same system can
measure the latency to certain data to gain inferences about
the secret-dependent activity of a target process. Broadly,
the plethora of prior work can be bifurcated into FLUSH+
RELOAD [24, 25, 73], where the adversary times the access
to shared data, and PRIME+PROBE [21, 27, 30, 38, 44, 49,
51, 63, 68], where they time accesses to their own data
which shares a cache set with the target’s data.
Control Hazards and Speculative Execution. To im-
prove performance, nearly all modern CPUs execute code
out of program order, especially in terms of control flow.
To avoid stalling when the correct control flow from a



control hazard is not yet available, CPUs predict the control
flow and execute instructions at the predicted execution
path speculatively. If the prediction matches the control
flow from program order, the changes in CPU state are
committed and made visible to software. Conversely, if the
prediction is incorrect, the CPU rolls back the modified
state and resumes execution from the ground-truth control
flow. However, microarchitectural changes, such as that to
the cache, are not reverted. This leads to an abundance of
control-flow speculation attacks, wherein an adversary can
transiently access and recover secrets on the same system
as the target [1, 13, 15, 16, 17, 22, 23, 28, 32, 33, 34, 36,
37, 39, 40, 53, 61, 62, 64, 65, 66, 70, 71].
Data Hazards and Out-of-Order Execution. In ad-
dition to predicting control flows, modern CPUs execute
instructions in the same basic block out of program order
and oftentimes in parallel when their operands are made
available. However, this entails three types of data hazards
that must be handled: 1⃝ Read-After-Write (RAW), where
the source operand of a younger instruction is the destination
of an older one, 2⃝ Write-After-Read (WAR), where a
register is read by an older instruction and modified by a
younger one, and 3⃝ Write-After-Write (WAW), where a
register is modified twice by older and younger instructions.

Modern CPUs can resolve WAR and WAW hazards by
register renaming [60], a technique that duplicates archi-
tectural registers into several microarchitectural registers to
obviate the temporal dependency caused by the overwrite.
In contrast, the RAW dependency is also known as a ‘true
dependency’ that cannot be resolved and thus reordered.
Here, the instructions must run serially due to the operand
of the younger instruction being unknown.
Data Speculation on Load Instructions. However,
recent industry patents and works in computer architecture
propound a novel mechanism named data speculation to
improve instruction-level parallelism on RAW dependencies.
Here, instead of speculatively executing instructions based
on predicted control flow, the CPU predicts values of data
based on past execution and attempts to reorder the RAW
dependency by executing younger instructions based on that
speculative value [14, 19, 35, 45, 47, 48, 56, 57, 69].
Load instructions are the most common targets for data
speculation since they frequently occur and highly vary in
latency, thus forcing the CPU to stall for RAW hazards for
more than 100 cycles on cache misses.
Load Address Prediction. One common way to speculate
on load instructions is to predict the memory addresses
they will access. We show an overview of a Load Address
Predictor (LAP) in Figure 1. Here, we focus on one ARM
load instruction at address 0xabcd, which takes the data
inside the x1 register as the load address and returns the
data at that address in the x0 register.

LAPs typically keep track of the load address in x1
each time the instruction at address 0xabcd is executed. If
the stream of addresses is predictable, such as constants or
striding values (Figure 1 (Left)), the LAP activates by spec-
ulatively issuing a load to the predicted address (0x40) and
waits for it to resolve in x0. When the load resolves, its data

0xabcd: ldr x0, [x1]

x1 = 0x10
x1 = 0x20
x1 = 0x30Observe Speculate

x0 ← [0x40]
x0

Figure 1: An overview of load address prediction.

can be forwarded transiently to younger instructions that use
x0, speculating on the correctness of the LAP’s prediction.
See Figure 1 (Right). Finally, when the load address for x1
resolves, speculation terminates. If the predicted address is
wrong, the CPU flushes its pipeline and resumes execution
from the correct load address, fetching the value to x1.

3. Threat Model

For the attack scenarios in Sections 5 and 6, we target
recent Apple CPUs. We assume that the target systems run
macOS 14.4, which are up-to-date at the time of writing, and
do not leverage software vulnerabilities. Furthermore, we
assume the systems operate in their default configurations,
especially with respect to side-channel countermeasures.

In Section 5, we model the attacker as a typical native
adversary with unprivileged code execution capabilities on
the target system. Next, in Section 6, we adopt the typical
web-based adversary model, wherein the target visits the
attacker’s webpage. Here, we assume the target uses the
Safari 17.4 browser, also up-to-date at the time of writing.

4. Reverse Engineering the LAP

In this section, we first confirm the existence of a LAP
on Apple’s M2, A15, and newer CPUs, and also rule out
the possibility that our results were due to prefetching.
We then reverse engineer the LAP’s activation criteria, and
measure the CPU’s transient behavior under LAP-induced
speculation. Finally, we discuses limitations, such as address
checks and instruction tagging.

4.1. Observing Load Data Speculation

We start with the following experiment outlined by the
C code in Listing 1. Overall, we run a loop of read-after-
write (RAW) dependent loads twice: first as a ‘dry run’ to
bring all the load addresses into the cache to rule out the
effects of classical prefetching, then second as a ‘wet run’
where we measure the runtime of the loop.

Line 2 starts the dry run, where we have filled an array
with different contents depending on the experiment. In one
experiment which we label as ‘Striding’, we fill the buffer
in a pointer-chasing manner with stride S. That is, we write
S to index 0, 2S to index S, 3S to index 2S, and so on.
In the other experiment labeled ‘Random’, we fill the buffer
with randomly generated in-bounds indices. We illustrate
this filling of the array in Figure 2.

Continuing the dry run in Line 3, we zero-initialize a
variable dep to act as the RAW dependency between loads



1 // Dry run to cache addresses
2 volatile int array[]; // See Fig. 2
3 volatile int dep = 0;
4 for (int i = 0; i < ITERS; ++i)
5 dep = array[dep];
6 // Wet run to measure runtime
7 dep = 0;
8 uint64_t start = get_timestamp();
9 for (int i = 0; i < ITERS; ++i)

10 dep = array[dep];
11 uint64_t end = get_timestamp();
12 return end - start;

Listing 1: C representation of our gadget to measure the runtime of a loop
of read-after-write (RAW) dependent loads.

S

0  S            2S           3S

2S 3S 4SStriding

Random

Array Index

3S 6S 0 S

1

2 3 4

1
2

3

4

Figure 2: The contents of the array in Listing 1 for each experiment. The
numbered bulletpoints indicate the order of memory accesses, with the first
memory access starting at the beginning of the array.

to the array. We declare the array and dep as volatile to
prevent the compiler from optimizing out Lines 4-5, as dep
is zeroed again in Line 7. Lines 4-5 show how we use dep to
create RAW-dependent loads in a manner similar to travers-
ing a singly-linked list. The load address into the array for
an arbitrary iteration i cannot be determined until the load of
iteration i−1 resolves, and its load value is copied into dep.
As a RAW dependency is a true dependency that cannot be
resolved by register renaming (cf. Section 2), we expect the
loads to be serialized on typical CPU microarchitectures,
regardless of the load addresses or values.

We now move on to the wet run, where Line 8 obtains a
timestamp. Lines 9-10 are identical to Lines 4-5 during the
dry run, looping through the RAW-dependent loads. Finally,
Line 11 obtains a second timestamp, and the difference from
the first timestamp is returned in Line 12.
Experimental Setup. We run Listing 1 on the P- and
E-cores of the Apple M1, M2, and M3 CPUs, using the
pthread_set_qos_class_self_np API in macOS
to schedule the Constant and Random experiments on each
core type. For both experiments, we report the median
runtime from 100 invocations of Listing 1. We set S = 32
bytes, and increase the ITERS variable (in Lines 4 and 9)
from 10 to 1,000 in increments of 10 iterations. Given these
parameters, the maximum size for the array is 1000 ∗ S <
32 KiB. The L1 data cache size of the M-series CPUs is
128 KiB for the P-cores and 64 KiB for the E-cores [5], and
thus all array elements can remain cached. Finally, for the
get_timestamp calls in Lines 8 and 11, we use macOS’s
kperf API to count CPU cycles.
Results. We show the resulting plots in Figure 3. On both
core types of the M1 (top left and bottom left), we observe

a consistent linear increase in latency, which does not differ
based on the load addresses or values. On the E-cores of the
M2 (bottom center), we observe an identical trend. Thus, we
conclude these cores lack load data speculation mechanisms.
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Figure 3: Striding (solid) and Random (dotted) experiment plots for the P-
and E-cores of the Apple M1, M2, and M3 CPUs.

However, on the P-cores of the M2 (top center), the
plot is vastly different: while the latency for the Random
experiment continues to increase linearly, the latency for the
Striding experiment diverges around 120 iterations, where
we observe a notable speedup. As the number of iterations
increases, the latency for the Striding experiment grows
much slower compared to that of the Random experiment.
Given that this speedup occurs even though the loads are
RAW-dependent on each other and cannot be parallelized,
and occurs only on loads whose addresses and values exhibit
a pattern, we confirm the presence of a data speculation
mechanism for loads on the P-cores of the M2.

Next, we attribute the obtained speedups to instruction-
level parallelism. That is, without load data speculation,
younger RAW-dependent loads must stall until older loads
are resolved. Conversely, a CPU with data speculation can
transiently execute the loads (using predictions) in parallel
with verifying these predictions from resolved loads.

Finally, we observe similar behavior on the M3, with the
E-cores showing no notable difference between the Striding
and Random experiments (bottom right), but the P-cores
showing a speedup on the former (top right). Moreover,
whereas 120 striding loads suffice to activate the prediction
mechanism on the M2, we observe this threshold is higher
on the M3 where the speedup occurs at 320 iterations.

4.2. Confirming Load Address Prediction

Having observed speedups from load data speculation,
we seek to confirm that the mechanism is a LAP. To test
for one, we fix the load values to be random. Then, we
introduce the SA+RV (Striding Addresses from Random
Values) experiment where the load addresses are striding
nonetheless. The top half of Figure 4 shows the array
contents and memory access pattern that we desire.
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Figure 4: Memory contents and access pattern for the SA+RV and Random
experiments. The latter is identical to the bottom half of Figure 2.

Despite the load values being random multiples of S
from our array fill, the array accesses always stride by S
in the SA+RV experiment. We compare it to the Random
experiment from Section 4.1 at the bottom half of Figure 4,
where both the load addresses and values are random. That
is, we confirm the existence of a LAP if we observe a
speedup on the SA+RV experiment compared to the Ran-
dom experiment. To achieve the memory access pattern of
the SA+RV experiment, we modify the for-loop of Listing 1
(Lines 3-4 and 9-10) slightly, as shown in Listing 2.

1 for (int i = 0; i < ITERS; ++i)
2 dep += min(array[dep], S);

Listing 2: Modified for-loop for making load addresses stride, despite the
contents of the array being random.

Instead of assigning the load value directly to the dep
variable to be used as a RAW dependency for the next
load address, we increment dep by the smaller of the load
value and the stride S. Furthermore, we populate the array
with randomly generated nonzero multiples of S, such that
regardless of the load values the array accesses will be
array[0], array[S], array[2S], and so on. We run
the Random and SA+RV experiments on the P-cores of the
M2 and M3 CPUs. For the SA+RV experiment, we use
the same parameters (median of 100, S = 32B, and cycle-
counting) as the Random experiment. Figure 5 shows the
resulting latency plots.
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Figure 5: SA+RV (solid) and Random (dotted) experiment plots for the
P-cores on the Apple M2 and M3 CPUs.

On both the M2 (left) and M3 (right) P-cores, until 500
iterations, the latency for the SA+RV experiment grows
faster than the Random experiment due to the additional
overhead of the min function in Line 2 of Listing 2. At 500
iterations and beyond, though, the SA+RV latency sharply
drops below that of Random and stays below. Moreover, it
grows at a notably slower rate.

From this, we arrive at an important conclusion: the
M2 and M3 CPUs observe load addresses originating from
the same instruction address, predicting subsequent load
addresses when the previous ones are striding. Thus, we
determine that their data speculation mechanism is a LAP.
Benchmarking More Apple Silicon. Next, we extend
our experiments to Apple’s recent mobile CPUs (A-series),
which share core designs with the M-series [5]. However,
A-series CPUs are available only on iOS devices, where
we do not have access to CPU cycle counters. As such,
we develop a portable version of the Random, Striding, and
SA+RV experiments by compiling them to WebAssembly.
We then compile the WebAssembly binary to machine code
using WebKit, the engine underlying the Safari web browser.
Since the timer resolution in WebKit is coarse (1 ms), we
fix the number of iterations to one million to amplify the
timing difference, while keeping the stride unchanged at 32
bytes. We indicate the presence or absence of the LAP across
several devices in Table 1.

Device CPU LAP

MacBook Pro (A2338) M1 ✗
MacBook Air (A2681) M2 ✓
MacBook Pro (A2918) M3 ✓

iPhone 11 (A2111) A13 Bionic ✗
iPhone 12 (A2172) A14 Bionic ✗
iPhone 13 Mini (A2481) A15 Bionic ✓
iPhone 13 (A2482) A15 Bionic ✗
iPhone 14 Pro Max (A2651) A16 Bionic ✓
iPhone 15 Pro Max (A2849) A17 Pro ✓
iPad Pro (7th Gen.) (A2925) M4 ✓

Table 1: LAP presence/absence on recent Apple devices.

We note that the core design of the M1 is similar
to the A14 Bionic, M2 to A15 Bionic, and M3 to A16
Bionic [5]. Thus, we observe results on the A-series devices
that are mostly consistent with our previous observations on
M-series devices. However, we observe contrasting results
on two devices that were released simultaneously (iPhone
13 Mini and iPhone 13) and have the same A15 Bionic
CPU. Given that the A15 is manufactured by only one
firm (TSMC), to the best of our knowledge, this is the
first observance of Apple CPUs with the same product code
differing in microarchitectural behavior in a similar manner
to the stepping level in Intel and AMD CPUs. Finally, we
note that the M4 CPU was just released at the time of writing
and also contains the LAP like its predecessors.

4.3. Confirming Speculative Execution via LAP

We now recall from Section 2 that LAPs speculatively
execute the load on the predicted address, bring the load’s
value into the register file, and then use the value for
younger dependent instructions until the ground-truth load
address becomes known. While the drastic speedups from
the Striding and SA+RV experiments in Sections 4.1 and 4.2
strongly point at such behavior, the loop of RAW-dependent
loads causes difficulties for reverse engineering because



in the case the LAP activates on striding addresses, the
speculative execution is always correct. This causes it (and
its microarchitectural traces) to be ‘masked’ by architectural
execution, precluding us from precisely measuring behavior
within the LAP’s speculation window.

Therefore, in this subsection, we aim to collect stronger
evidence for LAP-induced speculation and lay the ground-
work for subsequent reverse engineering experiments by
causing the predicted load address to differ from the ground-
truth load address, resulting in misspeculation that leaves
different microarchitectural traces.
Gadget Setup. We first implement a singly-linked list
where each node has a pointer to the next node and a pointer
to data in Figure 6. Here, we aim to mistrain the LAP using
the loads to the data elements.

Node Node Node Node
Next Next Next

Dummy Dummy Dummy Secret

Data Data Data Data

Buf

Stride Stride Stride

Figure 6: A graphical overview of the linked list and buffer data structures
to cause misprediction by the LAP. These data structures are also used by
the code shown in Listing 3.

As shown in all the nodes but the last, the nodes’ data
pointers hold striding offsets of a writable buffer in memory.
In each of the offsets, we write a dummy value. However,
we break this striding behavior for the last node. That is, to
the next striding offset of the buffer, we write a secret value
this time. But the last node’s data pointer does not point
there, instead pointing to the same memory address as the
second-to-last node. As such, all architectural dereferences
to data only point to dummy values.
Inducing Misprediction. Next, using the C code in
Listing 3, we show how to train the LAP such that it predicts
a load address that is never architecturally accessed and
transmits its value over a covert channel.

1 cache_flush(last_node, FR_buf);
2 struct Node *n = first_node;
3 while (n != NULL) {
4 uint8_t LAP_load = *(n->data);
5 FR_buf[LAP_load * PAGE_SZ];
6 n = n->next;
7 }
8 return FR_recv(FR_buf);

Listing 3: C representation of our misprediction gadget. The gadget per-
forms a linked list traversal while dereferencing the data pointer of each
node and encoding the value into a cache channel.

We use FLUSH+RELOAD [73] as our covert channel for
experimental expediency, as it supports transmitting several
different byte values. Line 1 performs its flushing step, but
also flushes the last linked list node from the cache. By
doing so, the value of the last node’s data pointer is not
quickly retrievable, forcing the CPU to use the predicted

address from the LAP. We show the effects of running
Listing 3 on Figure 6’s data structures in Figure 7. First,
we illustrate Line 1’s effect at the top right corner, with the
last node being colored orange to indicate it is uncached.

Node Node Node Node
Next Next Next

Flushed

Dummy Dummy Dummy Secret

Data Data Data Data

Buf

Stride Stride Stride

Data

F+R

Speculation

Figure 7: Overview of the outcome of running Listing 3 on Figure 6.
There is a divergence between architectural execution (blue arrows) and
speculative execution (red arrows, highlighted area).

Next, Line 2 declares a pointer to the first linked list
node, and Line 3 starts a while-loop for the traversal. In
this loop, Line 4 dereferences the data pointer of the current
node, storing its value in the LAP_load variable. It is this
load instruction which we coerce the LAP to predict the
address of, as for all nodes but the last, the load addresses
become B, B + S, B + 2S and so on for a given stride S
and buffer address B. Hence, at the last node, the LAP’s
predicted load address becomes B + nS for a linked list of
length n+1, whereas the actual load address is B+(n−1)S.
The right side of Figure 7 depicts this, where the speculative
dereferences (red arrows) differ from architectural, putting
the secret value into LAP_load.

Finally, Line 5 transmits the load value, and Line 6
advances to the next linked list node. We then receive over
the covert channel on Line 8. Without any LAP activation,
we expect to receive the dummy value only. On the other
hand, with LAP activation (and misprediction), we expect to
receive both the secret and dummy values. This is shown at
the bottom of Figure 7, where the bullhorn icons represent
covert channel transmissions. The area highlighted in yellow
marks the speculative execution from the mispredicted load
address, which leads to the secret value being transmitted.
Experimental Setup for Reverse Engineering. We now
introduce the setup we use to collect data from the workload
in Listing 3, and for further reverse engineering experiments
in Sections 4.4 to 4.6. We focus on the LAP of the Apple M2
CPU. For accurate measurements, we require the ability to
count cycles and flush cache lines from userspace programs.
Furthermore, to reduce noise and variation, we require the
ability to manually control CPU frequency, isolate CPU
cores from being used by operating system processes, and
pin programs to the isolated cores.

To that aim, we perform our experiments on Fedora
Linux’s Asahi Remix with kernel version 6.6.3-414, since
macOS lacks support for all of our requirements except
cycle counting. Here, we set all cores to their maximum
frequency using the cpufreq interface in sysfs and
the userspace governor. We exclude one P-core using the



isolcpus kernel parameter, and pin our experiment to it
with the sched_setaffinity system call.
Initial Results for Measuring Speculation. Following
prior results on Figure 5 where we observed LAP activation
at 500 iterations, we use a linked list of 501 nodes to train
the LAP on 500 striding data pointer loads, which are made
RAW-dependent by the linked list traversal. Likewise, we
keep the stride between data pointer addresses at 32 bytes.
Next, we test our gadget 1,000 times, where in each trial
we repeat Listing 3 for 20 runs. Over the FLUSH+RELOAD
covert channel, we receive the dummy value on all 1,000
runs and the secret value on 721 runs. We show a histogram
of the latency to reload the secret value in Figure 8.
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Figure 8: Histogram of latencies to the FLUSH+RELOAD memory address
that corresponds to the secret value.

Finally, we ascertain our results by not writing the secret
value into the striding buffer offset, and confirming that
it is no longer received over the covert channel. Hence,
we demonstrate that we can dereference pointers under
speculation and make the CPU operate on data at rest by the
LAP. That is, after being written, the secret value is never
architecturally read in by the core.

4.4. Spatial Conditions for Speculation

Having observed LAP-induced speculation from a mis-
predicted load address, we now seek to identify the spatial
conditions to reliably activate the LAP, that is, in terms of
virtual addresses the LAP interacts with and their topology.
We observe that the training length (i.e., number of linked
list nodes) and the stride for the load addresses are both
parameters, and analyze how they affect the probability of
the LAP activating. Then, we ask questions about the paging
of addresses and their effect on LAP training or activation,
as most classical prefetching occurs within a page.
Training Length and Stride: Experimental Setup. Our
setup here is largely identical to the experiment in Sec-
tion 4.3, where we run our misprediction gadget 1,000 times
on the same set of parameters. However, we vary the linked
list length from 20 to 1,000 in increments of 20, as well as
the stride between pointers to the buffer from -320 bytes to
320 bytes in increments of 8 bytes. That is, for a negative
stride value, we start writing the first dummy value at the
end of the buffer, and traverse it backwards with the given
stride to train the LAP.
Training Length and Stride: Results. We plot our results
in Figure 9 as a heatmap. Here, training length and load
address stride are the X- and Y-axes, and we represent the
number of observed LAP activations (out of 1,000) as the

heat, where the closer the color to dark blue, the more the
LAP activates. Also, we highlight zero values in yellow.
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Figure 9: Heatmap showing the effects of the linked list length and the
stride between training load addresses on the likelihood of LAP activation.
Values of zero are highlighted in yellow.

Firstly, at Stride = 0, the LAP seems to always activate
regardless of training length. However, this is expected, as
a zero stride leads the data pointers of all nodes to point to
the start of the buffer. In turn, this causes the secret value to
be transmitted architecturally. Hence, this is not speculation,
and we disregard the result (horizontal blue line).
Dead Zones for LAP Activation. Secondly, we observe
three ‘dead zones’ in Figure 9 with no LAP activations
(highlighted in yellow). The first is to the left side of the
heatmap, when the training length is less than 80. As we can
now measure LAP activity much more precisely by checking
for misprediction, we regard this as the minimum training
threshold for RAW-dependent striding load addresses from
which we can observe LAP activity (albeit at a low rate).
Furthermore, the second and third dead zones are at the top
and bottom of the plot, where the absolute value of the stride
is 256 bytes and above. From this, we confirm that the LAP
can keep track of both positive and negatively striding load
addresses, and conjecture that its internal state for the stride
is one sign bit with eight (log2 256) magnitude bits.
Optimal Conditions for LAP Activation. Thirdly, we
observe regions of both training length and stride wherein
the LAP has a proclivity to activate. We note a sharp
increase in activations across most strides with magnitude
less than 256 bytes when the training length exceeds 500.
This threshold coincides with when we observed an abrupt
speedup while testing for a LAP in Section 4.2, hence we
regard this as the practical training threshold to regularly
observe LAP activations. On the other hand, across all
training lengths above 80 (and especially past 500), we
emphasize a ‘block’ of frequent activations when the stride
has a magnitude below 64 bytes. Coincidentally, this is the
size of an L1 cache line on Apple CPUs: we conjecture that



small strides that access a cache line more than once during
training increase the LAP’s inclination to activate.
Measuring LAP Training and Prediction Across Page
Boundaries. We also demonstrate that the LAP on the M2
maintains training state across page boundaries, but will not
generate a prediction on a new page. See Appendix A.

4.5. Temporal Conditions for Speculation

Moving away from spatial conditions, we focus on iden-
tifying the temporal conditions for starting LAP-induced
speculative execution and prolonging the speculation win-
dow. First, we measure the window for which the LAP
keeps state during training when given extraneous instruc-
tions. Then, we measure how deeply the LAP speculates
conditioned on the caching status of the variables that are
crucial to the linked list traversal.
Gadget Overview. We modify the loop of Listing 3 (Lines
3-7) into Listing 4 to better separate (at the source code
level) the training iterations from the loop iteration where
the LAP misprediction happens.

1 uint8_t LAP_load;
2 for (int i = 0; i < LL_SIZE; ++i) {
3 // Insert MULs for training window.
4 LAP_load = *(n->data);
5 n = n->next;
6 }
7 // Insert MULs for speculation window.
8 FR_buf[LAP_load * PAGE_SZ];

Listing 4: Rewritten linked list traversal loop from Listing 3 that allows us
to insert dummy instructions at two different points in the code to measure
the training and speculation windows.

This loop is functionally equivalent for traversing the
linked list and dereferencing each node’s data pointer,
thereby training the LAP. However, on Line 2, we use a
for-loop spanning the linked list’s length instead of a while-
loop to make the loop unrollable by the compiler. Finally,
we move the FLUSH+RELOAD transmission outside the loop
to Line 8, having declared the LAP_load variable in Line
1 to have it in scope. As the loop terminates immediately
after LAP activation on the last node, the covert channel
reception is identical to before: LAP activation results in
the secret and dummy values being transmitted, while no
activation transmits just the dummy value.

However, the most notable difference is that we intro-
duce two lines where we can add extraneous mul instruc-
tions. If we insert them in Line 3, they are architecturally
executed between each load that trains the LAP in Line 4.
This lets us measure the effect of extraneous instructions
during LAP training. On the other hand, if we insert them
in Line 7, they are also speculatively executed before the
covert channel transmission when the LAP activates. Hence,
here we can measure the speculation window’s length.
Measuring the Training Window. We run our mispredic-
tion gadget for 1,000 runs on a stride of 32 bytes and 1,000
training addresses, since we have identified these parameters

to be optimal for activating the LAP from Section 4.4. We
continue using these parameters for all experiments in this
subsection. We use Listing 4 for the traversal loop, and insert
mul instructions into Line 3 from zero to ten of them in
increments of one. We plot the effect of the extraneous mul
instructions on the number of LAP activations in Figure 10.
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Figure 10: Number of LAP activations out of 1,000 runs when extraneous
mul instructions are inserted during training.

Surprisingly, we observe a sharp decrease in activa-
tions past 2 mul instructions, to no activations at 8 muls
and more. Hence, we conclude that the LAP employs a
short training window, wherein the striding loads must be
executed quickly enough to train the LAP. With Apple
documentation stating that each mul requires 3 cycles [5,
Appendix A], this window is at most 24 cycles.
Measuring the Speculation Window. We repeat the setup
for measuring the training window. Rather than inserting the
mul instructions into Line 3 of Listing 4, we insert them into
Line 7 instead (such that they will execute speculatively)
from 0 to 300 of them in increments of 10. We measure the
speculation window conditioned on the caching status of the
last linked list node and the predicted address. Firstly, we
keep the predicted address cached, and measure how many
mul instructions can fit when the last node is cached or
flushed in Figure 11 (Left). Then, we flush the predicted
address and repeat the experiments in Figure 11 (Right).
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Figure 11: Number of LAP activations when mul instructions are placed
in the speculation window. (Left) The LAP’s predicted address is cached.
(Right) The predicted address is flushed.

When the predicted address is cached, we observe that
the window length when the last node is cached is similar to
that of a speculation window opened by a branch predictor
when the predicate is evicted, at around 100 muls [31,
Section 4.2]. Contrarily, when the last node is flushed, we
show a speculation window twice as deep, exceeding 200
muls (or 600 cycles). However, with the experiments where
the predicted address is flushed, we observe 0 activations
regardless of the caching status of the last node. Hence, we
conclude that another precondition for the LAP to activate
is for the predicted address to be cached, and that the LAP
does not prefetch its predicted address.



Comparison with Data-Dependent Prefetching. Now
that we have understood how the LAP behaves, we revisit
the Data Memory-dependent Prefetcher (DMP) that was
shown in prior work [18, 67] to be present also on recent
Apple CPUs. If data being returned from a load resembles
a valid pointer, the DMP treats the data as an address
and dereferences it, anticipating that the address will be
loaded from at some later point. Although the LAP and
DMP are both present on Apple CPUs and activate on load
instructions, we note some important distinctions. Unlike the
LAP, the DMP does not speculate past RAW dependencies,
since it is a hardware prefetcher. Conversely, the LAP is
not a prefetcher: from the speculation window experiments
in this subsection, we observed that the LAP terminates if
the predicted address is not cached, instead of prefetching it
and continuing. Finally, only the LAP opens a speculation
window wherein arbitrary computations can be performed.

4.6. Confirming Instruction Address Tagging

We recall that typical LAPs proposed in literature keep
state per instruction address (cf. Section 2). Using the ex-
periments in Appendix B, we first observe that unrolling
Listing 4 causes the LAP not to activate, confirming that
it uses the instruction address as a tag. Subsequently, we
test if the LAP uses all or part of the instruction address for
such tagging. We begin by observing that the LAP’s training
state persists even if training is interrupted at the 30th-to-
last node. Next, we traverse the last 30 nodes using a clone
of Listing 4 whose instruction address aliases the original
for the lowest 6 to 47 bits. Finally, we confirm that the LAP
uses all canonical address bits of the training loads as a tag.

5. Weaponizing the LAP for Attacks

Having confirmed the LAP’s existence and described
techniques to use it for speculative execution in Section 4,
we now weaponize these techniques to serve as proof-of-
concepts on the danger of LAPs. We show how the linked
list traversal which activates the LAP can be modified to
speculatively hijack both data and control flow, just with
one more load in the traversal pattern. We then use this new
technique, which we name Spectre-LAP, to break Address
Space Layout Randomization (ASLR) on macOS.

5.1. Spectre-LAP

With our misprediction experiment in Section 4.3, we
recall from Figure 7 that with a load address stride of
S, the LAP gets trained to jump S bytes beyond the last
dummy value in the buffer. However, from an adversarial
perspective, the out-of-bounds reach becomes limited to S
which we show in Section 4.4 is at most 255 bytes. As
such, we now aim to augment our primitive with the LAP’s
deep speculation window shown in Section 4.5 to transiently
reach anywhere in the address space.
Gadget Overview. We revise the experiment in Section 4.3
to use the data structures shown in Figure 12. We assume

there is a secret at address addr that we wish to read. For
this, we retain the linked list with data pointers with striding
data pointers, and we flush the last node to force the CPU
to use the LAP’s predicted address as before.

Node Node Node Node
Next Next Next
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&dummy &dummy &dummy addr

Data Data Data Data

Buf

Stride Stride Stride

Data

Speculation

Dummy Secret

Figure 12: Our modified misprediction primitive that speculatively deref-
erences double pointers, allowing for a 64-bit out-of-bounds read. The
bullhorns indicate that both the dummy and secret data will be transmitted
over the covert channel.

However, our goal is to hijack data flow further beyond
S bytes of the last dummy in the buffer. To that aim, we
add a level of indirection by treating the contents of the
buffer as addresses, as opposed to values. We declare each
node’s data pointer to be a double-pointer, and write the
dummy element’s memory address at the buffer’s striding
offsets. Next, we write addr at the last striding offset (i.e.,
the LAP’s predicted address), but make the last node’s data
pointer point to the last dummy address written into the
buffer. In turn, for every node we traverse, we dereference
the double-pointer twice and transmit the resulting value
over the covert channel, which we depict with bullhorns.
Hence, LAP misprediction on this linked list results in the
LAP first loading addr, then loading the secret, then finally
transmitting the secret as we show in Figure 12’s highlighted
box. Lastly, we show the traversal code corresponding to our
new linked list in Listing 5.

1 while (n != NULL) {
2 uint8_t LAP_load = **(n->data);
3 transmit(LAP_load);
4 n = n->next;
5 }

Listing 5: C representation of the linked list traversal code for Figure 12,
i.e., a gadget for Spectre-LAP.

The sole change we make is Line 2 (highlighted). Here,
the first dereference into the buffer is the speculative load by
the LAP, and retrieves addr. When the LAP speculatively
forwards addr, the second dereference loads the secret into
LAP_load, which gets leaked in Line 3.

5.2. Hijacking Control Flow

Now, we show a variant of Spectre-LAP that diverts
control flow under speculation in addition to data flow.
Previously in Section 5.1, the dummy and secret elements
in Figure 12 were buffers containing data. Now, we assume
there is a function we wish to call during speculation named



secret_func, whose entry point is at address f_addr.
To divert control flow, we replace the dummy buffer with
a dummy function that shares a signature (arguments and
return type) with secret_func. In turn, we write the
address of the functions to the buffer, making each linked
list node contain a double function pointer. Graphically, we
keep the linked list structure at the top half of Figure 12,
but replace the contents of the buffer and the memory pages
for the secret and data elements with Figure 13.

&dummy
_func

&dummy
_func

&dummy
_func f_addrBuf

Stride Stride Stride

void dummy_func() {
 return;
}

void secret_func() {
 transmit(secret);
 *invalid_ptr;
 return;
}Note: linked list pointing to Buf

not shown in this figure for simplicity. 

Figure 13: Our changes to the lower half of Figure 12 for the pointer values
in the buffer to point to dummy and secret functions.

Invoking Rogue Functions Under Speculation. In this
modified setup, the dummy function does nothing and re-
turns. Conversely, secret_func contains the covert chan-
nel transmission, followed by a load to an invalid address.
This ensures that our program will segfault if the secret
function is ever invoked architecturally. Next, we replace
Listing 5 with Listing 6 to handle function pointers.

1 while (n != NULL) {
2 **(n->data)(); // Call pointed function
3 n = n->next;
4 }

Listing 6: C representation of the modified Spectre-LAP gadget to deref-
erence function pointers.

Comparing Line 2 (highlighted) with that of Listing 5,
the first dereference is still the load which the LAP activates
on. However, at that point, the second dereference now
brings the entry point of the secret function (f_addr) into
the CPU’s register file. As the CPU continues to speculate, it
branches to the entry point and executes the function body,
which contains the covert channel transmission (instead of
within Listing 6). As such, if the LAP activates and diverts
control flow under speculation, we will receive a value
over the covert channel. In contrast, if the LAP fails to
speculatively call functions, we will not receive any value.

5.3. Evaluation and Breaking ASLR

We now evaluate the accuracy and throughput for both
variants of Spectre-LAP on the M2 and M3 CPUs. More-
over, when using our attack on an invalid address, we find
that speculation continues to the covert channel transmission
only when we dereference mapped memory under specula-
tion. This serves as our motivation for breaking ASLR.

Attack Setup. For all three attacks in this section, we report
the median value of 100 runs. Moreover, as macOS disables
cache flush instructions, we use EVICT+RELOAD as the
covert channel instead. We continue to use the optimal LAP
training parameters of 1,000 addresses striding 32 bytes
apart from Sections 4.5 and 4.6.
Out-of-Bounds Reads. We first measure the out-of-bounds
read primitive from Section 5.1 by reading a secret string.
Here, we report the leak rate and bitwise accuracy when
recovering the string. The top row of Table 2 shows our
results, where we demonstrate that we can read out of
bounds robustly on both CPUs. Though, we observe the
LAP is more difficult to activate on the M3, indicated by
its significantly lower throughput.

Attack M2 Acc. M2 Rate M3 Acc. M3 Rate

OOB Reads 1.00 9,140 b/s 1.00 5,795 b/s
Control Flow 0.99 9,481 runs/s 0 0 runs/s
ASLR Break 0.72 11.39 ms 0.44 1,299.26 ms

Table 2: Results for Spectre-LAP and ASLR break attacks on the M2 and
M3 CPUs, shown as the median of 100 trials. The baseline accuracy, i.e.,
randomly guessing the ASLR slide, is 1/5120 ≈ 0.0002.

Hijacking Control Flow. Then, we measure the control
flow hijacking primitive from Section 5.2. In this case,
we measure throughput as how quickly we can execute
the misprediction routine, and accuracy as the fraction of
executions that resulted in a covert channel transmission.
In the middle row of Table 2, we observe similar results
as reading out-of-bounds on the M2. However, we do not
receive anything over the covert channel on the M3. Thus,
we conjecture that newer Apple CPUs contain measures that
prevent function calls from executing under speculation.
Breaking ASLR on macOS. XNU (the kernel underlying
macOS) employs a maximum slide of 80 MiB, placing
the entry point of a Mach-O binary at the start of any
16KiB page between virtual address 0x100,000,000
and 0x105,000,000 [8, 9, 10]. The ‘magic’ byte string
denoting the start of every 64-bit Mach-O binary is
0xfeedfacf [7], hence we repeatedly search for this
sequence using Listing 5 amidst 5,120 possible pages. We
measure the time to find a match, and check our guess
against the ground-truth slide value using the vmmap utility.

We succeed in breaking ASLR on both the M2 and M3,
and show the results in the bottom row of Table 2. We
find the M2’s more amenable LAP beneficial, recovering the
correct slide on 72 runs in a median time of less than 12 ms.
In contrast, on the M3 the search must be repeated several
times until we can output a guess, slowing the runtime by
two orders of magnitude and also affecting accuracy.

6. Attacking Safari With the LAP

We now reason about reading out-of-bounds in the
JavaScript sandbox of the WebKit engine underlying the
Safari web browser. Firstly, we describe how to overcome
the restrictions set by JavaScript sandboxing such as the



lack of pointers, memory management, and high-resolution
timing, resulting in a gadget that retains the linked list
structure but is able to transiently read JavaScript string
objects which do not belong to the attacker’s webpage.
Secondly, we further discuss and leverage WebKit’s memory
allocation techniques, which enable us to place an arbitrary
JavaScript string from any target webpage within the out-
of-bounds reach of our browser-based gadget.

These two parts complete our attack, which we name
SLAP, a portmanteau of speculative execution on data,
Safari, and the LAP. Finally, we show how SLAP can
compromise the security of the Safari web browser, reading
login-protected data from the DOM of real websites.

6.1. Timer-Resilient Covert Channel

As a side-channel countermeasure, WebKit restricts the
timer resolution in JavaScript to 1 ms [31, 43]. Hence, for
an end-to-end attack, we must first be able to distinguish
cache hits from misses with extremely coarse timing, about
seven orders of magnitude coarser than the timing difference
between a single cache hit and miss. We achieve this with
an amplifier gadget which we detail in Appendix C.

6.2. SLAP Gadget Overview

We recall that the out-of-bounds read primitive in List-
ing 5 uses two data structures: a linked list with data
attached, and a buffer that has pointer values written into
it at a fixed stride. The former is possible in JavaScript, but
pointers do not exist in the language. After observing that
the metadata object of JavaScript strings in WebKit is 16
bytes wide, and that hundreds of them can be contiguously
allocated, we replace the buffer with a region of WebKit’s
heap for JavaScript string objects full of dummy strings.
Training the LAP on String Objects. We illustrate
the changes for training the LAP on JavaScript strings in
Figure 14. Similarly to the native version in Section 4.3, we
adopt a construction where the last linked list node is evicted
to prolong the LAP’s speculation window (cf. Section 4.5),
and where each node’s data reference is a training address.
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Figure 14: Graphical overview of the browser-based version of our LAP-
training gadget. Architectural execution is shown in blue arrows, while
speculative execution is shown in red arrows and the highlighted region.

In this case, the data are JavaScript strings owned by the
attacker’s webpage, labeled Str 1, 2, and 3 in the figure. This
lets our training code obtain architecturally valid references

to them in the linked list nodes. For this subsection, we
assume that adjacent to these strings is another JavaScript
string that the attacker’s webpage does not own. As such,
JavaScript from the attacker’s webpage cannot reference this
string, making it architecturally out-of-bounds.

After making the last node’s data variable reference Str
3, we traverse the linked list with the JavaScript code shown
in Listing 7. While similar to the native linked list traversal,
Line 3 is the key difference. As we cannot dereference point-
ers in JavaScript, we retrieve n.data instead. By doing so,
under the hood, Safari’s JavaScript engine dereferences the
addresses of the string objects which we have allocated in
strides, thereby training the LAP. Then, to access the con-
tents of the out-of-bounds string, we call the charCodeAt
method, which returns the ASCII value of the character at
the given index. Finally, for the transmit function in Line
4, we encode the bits of the ASCII value into the cache
state, such that we can recover them subsequently using the
amplifier from Section 6.1.

1 let n = first_node;
2 while (n) {
3 const secret = n.data.charCodeAt(index);
4 transmit(secret);
5 n = n.next;
6 }

Listing 7: Our browser-based gadget to mistrain the LAP using the data
structures shown in Figure 14.

6.3. Exploiting Safari’s Memory Model

Thus far, we use the linked list training method on con-
tiguously allocated JavaScript strings for an out-of-bounds
memory access, which will proceed through speculation as
long as the memory layout is also that of a string. We also
amplify cache hits and misses to a point where they can
be distinguished with coarse timers. Now, we recall from
Section 4.5 that the LAP’s maximum stride is 255 bytes.
We indicate this as the red zone beyond our training strings
in Figure 15: in contrast, data placed further than that in the
black zone are not exploitable. Hence, our goal is to place
sensitive data from a target website into this span.

Training OOB Read Unreadable

Strings on Heap 255 B

Low Addr. High Addr.

Figure 15: Diagram of the regions of WebKit heap memory that are and
are not reachable with our attack primitive.

Consolidation and Object Heaps. WebKit uses its own
memory allocator, libpas, separately from the operating
system’s malloc API [50]. With libpas, WebKit par-
titions its virtual address space into several heaps, where
each heap can be multiple disjoint areas of addresses but
always contains JavaScript objects of the same type [6]. On
the other hand, the iLeakage attack observed that WebKit
does not isolate webpages into separate rendering processes



when using the window.open API call [31, Section 5.1].
We confirm this observation. Moreover, we observe that
JavaScript objects from different webpages but of the same
type can share a heap (in addition to a process).
Inspecting WebKit’s Heap Allocations. Now, we inspect
what data are allocated within the 255-byte reach of our
training strings in the JavaScript string heap. We first spawn
a new WebKit rendering process to handle the attacker
webpage. Then, we use the window.open call to render
the target webpage in the same address space. Lastly, we
allocate our training strings and inspect the address space
using a debugger. However, we observe that strings from
the target webpage’s DOM are not within the reach. While
we do find reachable memory where WebKit has allocated
a JavaScript string, the strings do not contain any user data.
Instead, they are internal to WebKit’s built-in JavaScript
APIs, such as error messages. We depict this case in the
memory diagram of Figure 16 (Top).

Training “Error” Secret

Training Secret“Error” FillerFiller

“Error” TrainingFillerFiller Reserved

Figure 16: Simplified memory layouts of WebKit’s address space. (Top)
No memory pressure is applied. (Middle) Memory pressure is applied with
the filler strings, and the target page has not loaded yet. (Bottom) Memory
pressure is applied, and the target page has completely loaded.

Massaging with Memory Pressure. Next, we observe
that memory pressure causes libpas to behave differently,
allocating more virtual address ranges for the string heap.
Hence, we allocate ‘filler’ JavaScript strings in the attacker
webpage first to exert memory pressure. Then, we allocate
our training strings. At this point, we observe that the
memory contents of the 255 bytes adjacent to the last
training string are vastly different. Instead of containing
internal WebKit strings, the region becomes reserved for
future string allocations. See Figure 16 (Middle).

Next, we load the target page using window.open. As
the page renders and executes JavaScript, the reserved region
becomes populated with strings as the target page’s scripts
interact with its DOM. Accordingly, we can probabilistically
induce the allocation of strings holding sensitive informa-
tion within the 255-byte reach of the LAP, as shown in
Figure 16 (Bottom). Finally, we note that memory pressure
can be applied discreetly and without attracting the user’s
attention, as the attacker’s website only needs to allocate
a few megabytes of filler strings to trigger libpas into
creating these reserved areas.

6.4. Reading Data Across Websites

With the setup for SLAP now being complete, we now
demonstrate its application to real-world targets. We first set
up a proof-of-concept target page that continuously queries
a server for the current time and displays it to the user when

the response arrives. In order to display the updated time,
our website must modify the DOM. This causes WebKit
to scan all DOM nodes and store the resulting HTML as
a string, reliably putting it into the LAP’s reach when the
attacker webpage window.opens our target page.
Initial Benchmarks. Using the M2 CPU, we run SLAP
end to end on macOS and Safari. Firstly, our attacker page
allocates 100,000 filler strings. Each string’s inline size on
the heap is 16 bytes, resulting in 1.6 MB of pressure on
libpas’s heap for JavaScript strings. Secondly, we allocate
the training strings for the SLAP gadget, observing that
about 500 of them can be contiguously allocated. Thirdly,
we open the target page described above and observe that the
DOM is usually 64 bytes away from the last training string.
Hence, to train the LAP on a 64-byte stride, we construct the
linked list from every fourth string, resulting in 125 linked
list nodes. Finally, we repeat reading the DOM of the target
webpage 10 times, with a median bitwise accuracy of 87.9%
and throughput of 0.384 bits per second. Here, we observe
that most noise is from single-bit errors, and can be further
filtered with repeated sampling.
Reading Inbox Data from Gmail. We now target real-
world websites. JavaScript runs on virtually every website
nowadays, interfacing with the document API to read and
write parts of the DOM. As such, we now investigate which
parts of the DOM of one of the largest email services can
be allocated adjacently to our training strings.

We assume the target is authenticated to Gmail, and
visits the attacker webpage. The attacker webpage allo-
cates 1.7 MB of filler and training strings, and then calls
window.open on Gmail’s inbox page when the mouse
cursor is placed over itself. As Gmail loads, JavaScript
in the page starts rendering the inbox, whose content is
personalized to the target. Over repeated trials, we show
that the subject line and the sender’s identity can land in
the reachable out-of-bounds region of the LAP, allowing for
recovery by the adversary in Figure 17.

Figure 17: (Top) Email subject and sender name shown as part of Gmail’s
DOM. (Bottom) Recovered strings from this page.

Fingerprinting Amazon and Reddit Activity. The main
pages of web services that recommend content to authen-
ticated users act as fingerprints for their past activity. As
such, we turn our attention to Amazon’s ‘Buy Again’ page
and Reddit’s home page, as both are major e-commerce and
forum platforms where users can express interest for certain
product categories or discussion topics (‘subreddits’).

Similarly to the Gmail scenario, we assume the target is
authenticated to Amazon and Reddit and visits our webpage.
We repeat the attack procedure from before, but cause the
window.open calls to open Amazon’s ‘Buy Again’ page



and Reddit’s home page. Then, we observe what personal-
ized data appears within reach of the LAP. On Amazon, we
recover a product description of coffee pods, which the user
has purchased previously, as we show in Figure 18 (Top
Left, Bottom Left). Furthermore, on Reddit, we recover text
from a comment on a post which belongs to a subreddit that
the user subscribes to: see Figure 18 (Top Right, Bottom
Right). Here, we note we can use Reddit’s search feature to
recover the original post and subreddit.

Figure 18: (Top Left) A listing for coffee pods from Amazon’s ‘Buy Again’
page. (Bottom Left) Recovered item name from Amazon. (Top Right) A
comment on a post on Reddit, and (Bottom Right) the recovered text.

7. Mitigations

Having demonstrated new attack surfaces opened by the
LAP, we now reason about strategies to mitigate them. As a
first step, in Section 4.1, we observed that E-cores on the M2
and M3 CPUs do not have the LAP. On MacOS and iOS, this
entails a simple user code change in the form of adding a call
to the pthread_set_qos_class_self_np API with
the QOS_CLASS_BACKGROUND argument [2]. However,
this approach is not universal: it may be undesirable to
computation-intensive applications, and E-cores in future
Apple CPUs may or may not have the LAP.
Attempting to Disable the LAP. Next, we seek to disable
the LAP altogether by writing to several candidate system
registers. On the M2 and M3 CPUs, our first candidate is
the Data Independent Timing (DIT) bit of the Armv8.4-A
ISA [11], which specifies that certain instructions should
have a latency independent of the operands when this bit is
set. Furthermore, the DIT bit can be set from userspace
(EL0) and per-process on macOS, and has been shown
to disable the Data Memory-dependent Prefetcher (DMP)
on the M3 CPU [18]. Hence, we hypothesize that it may
also disable other unconventional performance optimizations
such as the LAP. For the same reason, our second candidate
is bit 30 of the HID11_EL1 system register, which has been
shown to disable the DMP on the M1 and M2 CPUs [18, 41].
However, this bit can only be set on Linux, which has no
M3 support at the time of writing.
Testing More System Registers. On the M2 CPU and
Linux, we reference the Asahi project’s documentation on
Apple Silicon’s system registers [12] for bit descriptions per-
taining to prefetching. From this, we test the following five
bits: Bit 13 of HID2_EL1 “Disable MMU MTLB Prefetch”,
Bits 44-45 of HID5_EL1 “Disable HWP Load/Store”, Bit
0 of HID10_EL1 “Disable HWP Gups”, and Bit 3 of

ACTLR_EL1 “Disable HWP”. Here, we hypothesize that
‘HWP’ is an acronym for hardware prefetcher.
Results. We repeat the experiments with a loop of RAW-
dependent loads from Section 4.1 with one candidate bit set
at a time, with all others at their default values. The speedup
on the M2 and M3 CPU’s P-cores is still present with the
DIT bit set, indicating it does not disable the LAP. For the
system registers, the HID5_EL1 bits cause Linux to crash
immediately. All other bits do not affect operation, but fail
to eliminate the speedup likewise.
The ‘Kill Switch’ Bit. Another system register bit of
interest on Apple CPUs is bit 4 of HID4_EL1. However, its
description is “Force CPU Oldest In Order” [41], resembling
a kill switch to disable all out-of-order execution. Indeed,
we do not observe a speedup from the experiments in
Sections 4.1 and 4.2 after setting this bit. Repeating the
misprediction experiment from Section 4.3, we observe only
dummy values over the covert channel and no secret values,
confirming again that this bit does disable the LAP.

However, we cannot recommend this as a mitigation
due to macOS currently lacking support for setting this
bit even for privileged users, necessitating Apple-released
software updates. Moreover, the performance penalty is dire:
we measure this with PassMark’s PerformanceTest version
11.0.1002. On default settings, the M2 scores 8,098 points.
However, with the ‘kill switch’ bit set, the score drops to
2,873, a slowdown of 2.81x. For comparison, this is just
below the 2,929 points scored by an Intel Core i5-2500T,
a consumer desktop CPU released in 2011 [46]. We leave
the task of finding a method to disable the LAP at the CPU
level without significant performance impact to future work.
Considerations for Safari. We emphasize the importance
of site isolation [55], a mechanism preventing webpages
of different domains from sharing rendering processes. Site
isolation is already present in Chrome and Firefox [42, 55],
preventing sensitive information from other webpages from
being allocated in the attacker’s address space. While its
implementation is an ongoing effort by Apple [3, 4], site
isolation is not currently on production releases of Safari.
On the contrary, we also reflect on libpas’s heap layout
from Section 6.3, allowing sites to not only share processes,
but also heaps. Partitioning JavaScript heaps by at least sev-
eral memory pages per-webpage would prevent JavaScript
strings from the target webpage from being allocated within
the 255-byte reach of the LAP.
Future Mitigations. In the short term, a practical mitigation
from Apple would be to disable the LAP when the DIT
bit is set, following its precedent with the DMP. Doing
so would allow developers to disable the LAP in sections
of code handling secrets without affecting other programs
(since its state is kept per-process), and subsequently re-
enable it for non-sensitive code regions to leverage the
LAP’s performance benefits on data dependencies.

For future microarchitectures, prior work in side-channel
defense literature [20, 59, 72] proposes hardware support for
marking memory regions or operands as holding secrets, and
for speculation to abort if the CPU ever accesses marked
data. We acknowledge this would make exploitation more



challenging, since speculation would terminate before our
gadgets can retrieve a marked secret and encode it over
microarchitectural covert channels. However, this method
requires vendors to release new hardware with extensive
additions to circuitry, while requiring developers to update
their software to explicitly mark sensitive data.

8. Conclusion

In this paper, we discover a new mechanism for data
speculation in the form of load address predictors in recent
Apple CPUs. The LAP can issue loads to addresses that have
never been accessed architecturally and transiently forward
the values to younger instructions in an unprecedentedly
large window. We demonstrate that, despite their benefits
to performance, LAPs open new attack surfaces that are
exploitable in the real world by an adversary. That is, they
allow broad out-of-bounds reads, disrupt control flow under
speculation, disclose the ASLR slide, and even compromise
the security of Safari. In the landscape of the decline of
Moore’s Law birthing more exotic microarchitectural op-
timizations, we believe that LAPs may not be an Apple
exclusive, either now or soon. As such, we emphasize
the need for novel hardware and software countermeasures
against LAPs in future work.
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Appendix A.
LAP Behavior on Page Boundaries

Does the LAP Train Across Page Boundaries? We now
seek to determine if the LAP maintains training state across
page boundaries. To do so, we focus on two specific cases
of the linked list workload from Section 4.4, where all use
a stride of 128 bytes, in Figure 19.
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Figure 19: Diagram of how the buffer used for training the LAP is allocated
across pages for each case, along with the number of activations to the right.
The ‘D’ and ‘S’ squares represent dummy and secret values, respectively.

The page size on Apple CPUs is 16 KiB. Here, Case A⃝
trains the LAP on 128 nodes, such that training occurs across
one page and the predicted load address is near the end of
the page (offset 0x3f80). Case B⃝ uses 256 nodes, training

https://sgaxe.com/files/SGAxe.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf


across two pages: likewise, the predicted load address is near
the end of the second page. Hence, we compare the number
of LAP activations across cases A⃝ and B⃝. According to the
heatmap in Figure 9, doubling the training length from 128
to 256 generally doubles the number of activations. As case
B⃝ has 128 training addresses on the first and second pages
each, we expect to observe about double the activations if
the LAP keeps state across pages, and the same otherwise.

We present the number of activations for each case as
the bolded number to the right of each memory diagram in
Figure 19. Comparing A⃝ with B⃝, we answer the question
in the affirmative from the approximately twofold increase
coming from another page of training addresses.
Does the LAP Predict Across Page Boundaries? In
addition, we determine if the LAP will generate a prediction
on a new page. We start with Case B⃝ from Figure 19,
and add Case C⃝ for comparison. Its 257 nodes (instead of
256) make training take place across two pages, but cause
the predicted load address to be on a new page. Viewing
the number of activations again, we answer the question in
the negative this time, as we see no activations when the
predicted address is on a new page.

Appendix B.
Confirming Instruction Address Tagging

We use the training window experiment from Section 4.5
as the groundwork, and the same training parameters (1,000
loads striding 32 bytes apart) to optimally activate the LAP.
We now describe our modifications to first test for the
presence of an instruction address tag, and then test whether
the tag is a partial or full match.
Effects of Loop Unrolling. Firstly, we observe 997 LAP
activations on Listing 4 with no mul instructions inserted.
Then, we direct the compiler to completely unroll the for-
loop in Line 2, and manually inspect the resulting binary.
Here, we observe 0 LAP activations when the training loads
are not from the same program counter. This observation
indicates that the M2 LAP does indeed tag training states
using some or all parts of the instruction address, and not
the global history of load addresses.
The Control Experiment. Now, we aim to determine if
the LAP uses a partial or full address match. To do so, we
first design a control experiment where we divide training
into two phases with a short interruption in between (which
we know the LAP can tolerate from Section 4.5) and ensure
that we can still activate the LAP. During the interruption,
we write a different secret value to the LAP’s predicted
address. Our goal is to place the interruption where the
LAP’s training state persists. That is, the second phase alone
should not be able to activate the LAP. However, when we
run both phases, we should receive the new secret value.

We start by putting Listing 4 in a function. We call the
function to traverse the first 1000− x linked list nodes for
the first training phase. Then, we write the new secret value.
Finally, we call the function again to traverse the last x nodes
using the same instruction addresses. We increment x from

1 to 30 and measure the number of LAP activations (where
we receive the new secret value) in Figure 20 (Left). From
the plot, we conclude that x = 30 causes the LAP to reliably
maintain training state.
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Figure 20: (Left) Number of LAP activations when training is interrupted
across a function call, starting at the last linked list node and ending at the
30th-to-last. (Right) Number of LAP activations when all but the last 30
nodes are traversed by the original function, and the rest are traversed by
the aliased clone function.

Aliasing the Second Training Phase. Next, we create
a clone of this function. We use linker scripts for ld to
place the two functions apart at a fixed offset to alias
the instruction addresses, ranging from the lowest 6 to
47 address bits. We traverse the first 970 nodes using the
original function and write the new secret value, identically
to the control experiment. However, we then traverse the
remaining 30 nodes using the cloned function. With this
setup, we observe 0 LAP activations for all aliasing offsets,
as we show in Figure 20 (Right). Therefore, we confirm
that the LAP looks for a full match of all canonical address
bits, since a partial match would lead to the LAP’s training
state persisting (and thus the new secret being transmitted)
at some point during the experiment.

Appendix C.
Timer-Resilient Covert Channel

In order to make cache hits distinguishable from misses
in Safari, we reference the NOT gate-based cache amplifica-
tion primitive from [29, Section 5], adjusting the speculation
parameters for the M2 CPU. We run the amplifier 500 times
when the target address is cached and 500 more times when
it is evicted, in native and WebAssembly implementations.
Table 3 summarizes the timing distributions, with units in
ms. We observe that they are clearly separable even in a
web environment, allowing us to distinguish cache hits from
misses with WebKit’s 1 ms timer.

Test Cached Evicted
Avg. Time Stdev. Avg. Time Stdev.

Native 5.12 0.30 9.40 1.14
WASM 7.54 0.51 11.87 1.17

Table 3: Average runtime and standard deviation (both in milliseconds)
for the NOT gate-based cache amplification primitive on native and We-
bAssembly runtimes on the Apple M2 CPU.



Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

This paper shows that some Apple CPUs use load ad-
dress prediction, a data speculation technique that can in-
crease performance in the presence of data hazards, but that
also opens up the possibility of new speculative execution
attacks. The paper characterizes the conditions under which
load address prediction activates, estimates the speculation
window that it gives rise to, and develops exploitation
techniques. The paper succeeds in building an end-to-end
attack that targets a web browser and succeeds in reading
cross-origin data.

D.2. Scientific Contributions

• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field

D.3. Reasons for Acceptance

1) The paper identifies an impactful vulnerability in sev-
eral widely used processors. It rigorously reverse en-
gineers and documents the data speculation technique
that these vulnerable processors use, and it develops
practical exploitation techniques showing how to ex-
ploit the vulnerability.

2) The paper provides a valuable step forward in an estab-
lished field. While the study of speculative execution
vulnerabilities is well-established by now, this paper
studies data speculation which is less well-understood
than control flow speculation.
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