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Abstract
To bridge the ever-increasing gap between the fast execution
speed of modern processors and the long latency of memory
accesses, CPU vendors continue to introduce newer and more
advanced optimizations. While these optimizations improve
performance, research has repeatedly demonstrated that they
may also have an adverse impact on security.

In this work, we identify that recent Apple M- and A-series
processors implement a load value predictor (LVP), an opti-
mization that predicts the contents of memory that the pro-
cessor loads before the contents are actually available. This
allows processors to alleviate slowdowns from Read-After-
Write dependencies, as instructions can now be executed in
parallel rather than sequentially.

To evaluate the security impact of Apple’s LVP implemen-
tation, we first investigate the implementation, identifying
the conditions for prediction. We then show that although
the LVP cannot directly predict 64-bit values (e.g., pointers),
prediction of smaller-size values can be leveraged to achieve
arbitrary memory access. Finally, we demonstrate end-to-end
attack exploit chains that build on the LVP to obtain a 64-bit
read primitive within the Safari and Chrome browsers.

1 Introduction

The computer industry is witnessing an ongoing paradigm
shift in the desktop and server markets, where x86-based
Intel and AMD CPUs are now competing with a growing
portfolio of Arm-based CPUs from Apple, Qualcomm, and
Amazon. As new contenders in the market, many of these
heavyweight Arm CPUs are notable for being clean-sheet
designs, differing significantly not only in instruction set but
also in microarchitecture from x86 CPUs.

However, clean-sheet designs are not free of clean-sheet
problems. For instance, Apple’s M-series CPUs have been
reported to exhibit security issues pertaining to novel CPU
features such as data-dependent prefetching [12, 57], pointer
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authentication [46], and instructions that allow for timerless
cache attacks [63], in addition to more traditional issues that
have also plagued x86-based CPUs such as speculative exe-
cution [18, 25] and data-dependent throttling [51].

In a never-ending quest to improve performance, archi-
tectures also have attempted to streamline the execution of
dependent instructions. One such proposed optimization aims
to alleviate slowdowns from Read-After-Write (RAW) depen-
dencies. These occur when younger instructions read from
the same location that an older instruction writes to, forcing
the CPU to serialize these instructions. Accordingly, several
works propose mechanisms that de-serialize RAW dependen-
cies through prediction [2, 9, 21, 23, 30, 41, 42, 48, 49, 59],
resulting in performance speedups.

With Spectre [27] and followups [1, 8, 10, 15, 20, 25, 28,
34, 46] demonstrating the security hazards of predictions, in
this paper we ask the following question:

How are RAW dependencies handled on emerging CPU
designs? What optimizations do they entail and what are their
security implications?

Our Contributions
In this paper, we discover a prediction mechanism for RAW
dependencies that, to the best of our knowledge, was previ-
ously unseen in the wild. We show that Apple’s M3, M4, and
A17 Pro CPUs all optimize RAW dependencies via a load
value predictor (LVP), which observes data values returned
from load operations. If the values are constant, these CPUs
can open a speculation window the next time this load exe-
cutes, rather than waiting for the result to become available
after a RAW dependency resolves. Within the speculation
window, the predicted load values can be forwarded to arbi-
trary younger instructions that depend on them, thus causing
the CPU to compute on the predicted value under speculation.

After characterizing Apple’s LVP implementation, we pro-
ceed to demonstrate its security implications especially when
the mispredictions cause transient computation using stale
load values. Here, we show how the LVP causes type confu-



sion attacks in Safari and hijacks control flow in Chrome. In
both cases, we package our primitives into end-to-end attacks
that read arbitrary 64-bit addresses, allowing us to recover
sensitive data across webpage origins.
Discovery and Characterization of the Apple LVP. We
begin with an experiment that serially reads from a randomly
shuffled collection of memory addresses and measures the
running time. Remarkably, despite serializing the instruction
via a RAW dependency, the M3 CPU runs drastically faster
when the data stored in our memory addresses is a constant,
compared to when it is randomly generated. Next, we proceed
to reverse engineer the LVP’s activation criteria, finding that
the Apple LVP activates only for constant load values as op-
posed to striding ones, and keeps training state per instruction
address for up to 72 different addresses. Moreover, it predicts
arbitrary values only for 4-byte-wide loads and smaller, and
not for 8-byte loads (which could be pointer values).

Subsequently, we demonstrate a primitive that causes the
LVP to mispredict and speculatively compute on a stale value.
Here, 250 training loads suffice to train the LVP with enough
confidence for reliable mispredictions, with the resulting spec-
ulation window lasting up to 330 cycles. Next, we add a layer
of indirection, causing the stale value to select and dereference
an incorrect pointer, or even perform incorrect function calls.
Thus, we demonstrate that LVP-induced speculation violates
memory safety not only with 64-bit out-of-bounds reads, but
also by diverting execution to rogue functions that are never
architecturally invoked. Finally, we also show that the LVP
can be mistrained in kernel-space assuming the existence of
suitable gadgets, exacerbating the security risks.
Exploiting LVP Mispredictions in Safari. Going beyond
LVP activations in the OS kernel, we show the practical se-
curity implications of the LVP by demonstrating 64-bit out-
of-bounds reads in Safari, despite Apple’s recent hardening
attempts. To that aim, we use a gadget that accepts an object,
which has a string member. The gadget dereferences the 64-
bit pointer to the backing store of the string, and transmits the
value it reads through a cache covert channel. In execution,
we pass an array that contains raw binary data instead of the
expected object type, but we exploit the LVP to confuse the
processor about the input type.

Consequently, the CPU transiently executes the gadget on
the wrong object type. Thus, instead of dereferencing a pointer
to a string, the processor uses the attacker-controlled data in
the array, confusing the CPU to read from an address of the
attacker’s choosing and transmitting the read value through
a covert channel. With this speculative type confusion prim-
itive, we run the FLOP-Data attack end-to-end, recovering
the target’s location history from Google Maps, inbox content
from Proton Mail, and events stored in iCloud Calendar.
Exploiting LVP Mispredictions in Google Chrome. Going
beyond disrupting data flows, we present the FLOP-Control at-
tack, which causes the CPU to execute the wrong WebAssem-
bly function under speculation in Google Chrome. In this

attack, we call functions indirectly from a dynamic function
dispatch table. Firstly, we mistrain the LVP on the table in-
dex such that the CPU retrieves the wrong dispatch object.
Then, we mistrain the LVP again in a nested manner, such
that the CPU will mistakenly validate the function arguments
against the dispatch object when they are in fact invalid. This
results in the CPU branching to a rogue function, which then
computes on unchecked arguments.

When this nested LVP misprediction happens, architec-
turally, we provide a 64-bit integer argument to a function
which takes a 64-bit integer. However, the LVP causes control
flow under speculation to be misdirected to a function taking
a struct reference, which is implemented as a 64-bit pointer
in Chrome. Therefore, we cause the CPU to confuse data with
an address, leaking the target’s credit card information and
billing address on Square storefronts.
LVP and DIT Interaction. Finally, we discover that the
Arm ISA’s Data Independent Timing (DIT) bit disables the
LVP on the M3 CPU on a per-process basis, with no privileges
needed to set the bit. See Section 7 for details.
Summary of Contributions. We contribute the following:
• We identify that an LVP exists on recent Apple CPUs,

reverse engineering the preconditions for activation. We
demonstrate a gadget to cause load value mispredictions,
showing how the LVP can cause loss of control flow and
data integrity under speculation (Section 4).

• We weaponize the LVP to perform a speculative type confu-
sion attack on Safari, escaping its sandbox and recovering
sensitive data from popular web services (Section 5).

• We weaponize the LVP again to transiently execute the
wrong function in Chrome, demonstrating another sandbox
escape and recovery of secrets (Section 6).

Responsible Disclosure. We disclosed our results to Apple’s
Product Security Team on September 3, 2024. Apple has
acknowledged our disclosure and is continuing to investigate
our report. For more details, see Section 9.

2 Background

Cache Side-channel Attacks. Virtually all modern CPUs
use caches, which are small data buffers on or close to
the CPU cores. For data that is used recently or frequently
by the cores, the cache reduces memory access latency.
However, this also means an adversary on the same sys-
tem or core can time accesses to data and gain informa-
tion about a target program’s memory access patterns. Pre-
vious works demonstrate several techniques to do so, with
some examples being FLUSH+RELOAD [17, 62] and PRIME+
PROBE [13, 22, 32, 38, 43, 44, 58].
Out-of-Order and Speculative Execution. Another ubiqui-
tous performance optimization beyond caches is speculative
and out-of-order execution, which allows processors to de-
viate from program-induced instruction order, particularly



when arguments are not readily available. When an execution
reaches a branch whose outcome cannot be immediately re-
solved, the CPU attempts to generate predictions based on
prior behavior, and continue executing instructions down that
path until the correct control flow can be computed. However,
this implies that CPUs can transiently execute the wrong in-
structions or operands. The Meltdown [31] and Spectre [27]
attacks pioneer the insight that such transient execution car-
ries grave security consequences, due to microarchitectural
state not being completely reverted in case of mispredictions.
This has since resulted in numerous followup, breaking nearly
all hardware-backed security domains [1, 8, 10, 11, 15, 20,
25, 26, 28, 33, 34, 35, 45, 46, 52, 53, 54, 55, 56, 61].
Read-After-Write Dependencies. In a never-ending quest
to improve performance, computer architectures also have
attempted to streamline the execution of dependent instruc-
tions. While most dependencies can be solved via on-the-fly
register renaming, Read-After-Write (RAW) is a fundamen-
tal data dependency for all pipelined CPUs when an older
instruction writes to the same location that is read from by a
younger instruction. Typically, the CPU must run the older
instruction to completion before the younger one can exe-
cute, because its operand cannot be computed before that
point. Accordingly, RAW dependencies result in a slowdown
of the pipeline, prompting computer architects to propose
value prediction [14, 23, 40, 41, 42]. After observing values
from instructions repeatedly, a CPU with value prediction
can speculate past RAW dependencies by executing younger
instructions with the predicted value.
Load Value Prediction. Within value prediction, Load
Value Predictors (LVP) are among the most proposed [7, 9,
30, 39, 48, 49, 59], because not only do loads (and stores)
occur frequently in program code, but they vary in latency
greatly from <10 cycles for L1 cache hits to hundreds of
cycles from main memory. Mitigating this, Figure 1 presents
an outline of a typical LVP mechanism.

for (i=0; i<N; i++)
  val = arr[val];

i=0: val=foo
i=…: val=foo
i=10: val=foo

LVP 
ObservesCPU Runs Snippet

for (i=11; i<N; i++)
  val = foo;

for (i=11; i<N; i++)
  if load(i) != foo
    rollback();

Parallel

SpeculationVerification

LVP 
Activates1

2

34

Figure 1: Overview of load value prediction.

We begin at 1⃝ in the figure, depicting a loop with a RAW
dependency. That is, the next index into the array to load from
cannot be determined until the previous load completes and
its value is saved into the val variable1. The LVP observes
values being returned from the loads, oftentimes from the
same instruction address as is the case for loops. If the loads

1We note that this pointer-chasing scheme is in fact a RAW dependency
in the CPU’s register file, even though main memory is not written to.

predictably return the same value (such as foo) more than a
set number of times as indicated in 2⃝, the LVP activates.

Once activated, the LVP causes the CPU to perform two
tasks, 3⃝ and 4⃝, in parallel. The first task 3⃝ is to specula-
tively run the rest of the code using the predicted load value
foo for the val variable, bypassing the loads caused by index-
ing into the array. The second task 4⃝ is to execute the loads
one by one, where we denote load(i) as the value returned
from the i-th load in the loop. If all of them equal foo, the re-
sults of the first task are committed to the CPU’s architectural
state. Conversely, if there is a mismatch (e.g., from another
core modifying the array), the speculative results are reverted
and execution is replayed at i=11. Therefore, 3⃝ can proceed
until 4⃝ either completes or rolls back.

3 Threat Model and Setup

We assume a typical browser-based threat model for our attack
in Sections 5 and 6, where the target user runs a web browser
and visits an attacker-controlled webpage. Furthermore, we
focus on recently released Apple CPUs. Here, we assume the
target system is a Mac with an Apple silicon CPU running
macOS 14.5, Safari 17.5, and Chrome 128.0 with out-of-the-
box settings. All versions are the most recent at the time of
writing. Finally, we do not modify settings of side-channel
countermeasures, leaving them in their default state.

4 Analysis of the Apple M3 LVP

4.1 Ascertaining the LVP’s Presence
We now describe our procedure to test for load value pre-
diction. Initially, we allocate a large buffer called mem that
spans multiple cache lines. For our experiment, we fill this
buffer with a constant value such that the value of a load from
anywhere in the buffer will be predictable. The pseudocode
in Listing 1 operates on this mem buffer.

1 memset(mem, CONST, MEM_SIZE);
2 int offsets[ITERS] = getOffsets(mem, ITERS);
3 shuffle(offsets);
4 flushBuffer(mem);
5 uint64_t start = getCycles(), junk = 0;
6 for (int i = 0; i < ITERS; ++i)
7 junk = junk + *(mem + offsets[i]);
8 uint64_t end = getCycles();
9 return end - start;

Listing 1: Our routine to measure the memory access latency on randomly
shuffled addresses, where the load values may be identical or random.

We measure the number of CPU cycles to access several
random cache line-aligned offsets (multiples of 128 bytes)
comprising the mem buffer, where ITERS is the number of
offsets accessed. To this aim, Line 1 memsets the entire buffer



such that any byte-wide load from mem will return CONST. Line
2 computes the aligned offsets, storing them in the offsets
array. Then, Line 3 randomly shuffles the offsets, making
the access pattern unpredictable to avoid activating hardware
prefetchers. Line 4 flushes all of mem from the cache. By doing
so, we ensure each access is a cache miss, creating favorable
conditions for an LVP to activate (if one exists) to alleviate the
slowdown in performance. After Line 5 obtains a timestamp,
Lines 6-7 perform byte-wide loads to the offsets into mem in
a loop. Here, to cause the loads to run serially, we insert a
RAW dependency as the junk variable. Finally, Line 8 takes
the second timestamp, and Line 9 returns the elapsed cycles.

We compare this experiment against our control, where we
replace the memset in Line 1 with filling randomly generated
values into the mem buffer such that the load values from mem
will be unpredictable instead of constant. Figure 2 shows
a graphical representation of the load addresses and values
handled by Lines 6-7 in our experiment and control.

3a 00 79 fd 0e 45

12 12 12 12 12 12

Control

Experiment

Access Order

Access Order

mem Content

mem Content

1 23 4 6 5

123 45 6

Figure 2: Comparison of our experiment against its control. While the access
order for load addresses is always random, we vary the content of the mem
buffer to be constant in our experiment and random in our control.

Experimental Setup. For precise measurements, we need
kernel-level support for counting CPU cycles, pinning pro-
grams to CPU cores, and flushing cache lines. As these fea-
tures are not available on macOS by default, we use Apple’s
Kernel Debug Kit (KDK) for macOS 14.5 build 23F79 to run
macOS with the KDK’s development kernel, and specify the
details in Appendix A. With this setup, we run the control and
experiment on the Apple M2 and M3 CPUs. All modern Ap-
ple CPUs have heterogeneous core designs, packaging a com-
bination of high-performance P-cores and energy-efficient
E-cores. Therefore, we consider each core type separately
since they vary significantly in microarchitecture. We vary
the ITERS parameter in increments of 10 from 10 to 500, and
we use the median of 100 samples for each data point.
Results. Figure 3 shows the resulting plots. On the M2’s P-
cores (top left), our experiment does not result in particularly
faster runtimes compared to our control. That is, the runtimes
increase linearly with the number of loads performed, due
to the RAW dependency between instructions, and does not
depend on the values loaded from memory being randomized
or constant. Thus, we conclude that an LVP is not present.
In contrast, the runtimes from the M3’s P-cores (top right)
show a significant speedup from 40 iterations and above on
our experiment when the load values are constant. At the
maximum of 500 iterations, our workload only takes about
half the cycles in that case compared to when the load values
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Figure 3: Runtimes of the gadget in Listing 1 on each CPU and core type.
The control and experiment plots heavily overlap for the E-cores.

vary randomly. As such, we determine the P-cores are indeed
equipped with an LVP, alleviating the performance penalty
from RAW dependencies. Moving on to the E-cores of both
CPUs (Figure 3 bottom), these generate plots that do not differ
significantly by load value, indicating the lack of LVPs.
LVP Presence on Other Apple CPUs. After determining
that the LVP is present on the M3 and not the M2, we seek
to extend our experiments to more Apple CPUs. To that aim,
we create a portable version of Listing 1 by compiling it to
WebAssembly. Next, we fix the ITERS variable to 10 million
to make the runtime difference measurable using Safari’s
coarse timer (1 ms). From this, we indicate whether each
CPU has an LVP on Table 1. That is, the LVP is present on
the M3, M4, and A17 and absent on the M2, A15, and A16.

Apple CPU Tested Device Has LVP?

M2 MacBook Air (A2681) ✗
M3 MacBook Pro (A2918) ✓
M4 iPad Pro 7th Gen. (A2926) ✓

A15 Bionic iPhone 13 Mini (A2481) ✗
A16 Bionic iPhone 14 Pro Max (A2651) ✗
A17 Pro iPhone 15 Pro (A2848) ✓

Table 1: Survey of LVP presence on recent Apple desktop and mobile CPUs.

4.2 Identifying LVP Activation Criteria
Having established the LVP’s existence, we now investigate
its behavior for load instructions of different width, whether it
detects striding load values (as opposed to constants) and its
response to loop unrolling. We compare the outcomes of these
changes against our initial M3 P-cores observations (top right
of Figure 3), which is copied over and shaded in gray. Finally,
we also identify how many predictions the LVP mechanism
can manage simultaneously.
Width of Loads. We repeat the measurements from Sec-
tion 4.1, but change the pointer dereference in Line 6 of List-
ing 1 to have a load instruction of varying widths. We test for



a speedup compared to our control when using 1, 2, 4, and
8-byte loads, and for each of the 100 samples we vary the
constant value that every load returns. See Figure 4.

0
1000
2000
3000
4000
5000
6000

Cy
cle

s

1B Loads 2B Loads

0 100 200 300 400 500
Iterations

0
1000
2000
3000
4000
5000
6000

Cy
cle

s

4B Loads

0 100 200 300 400 500
Iterations

8B Loads
Control
Experiment
Zeros

Figure 4: The effect of load width on LVP activation for the M3 CPU.

Remarkably, while all other load widths activate the LVP
on any constant value fitting that width, we observe that acti-
vation on 8-byte wide loads occurs only when the load value
is zero. We conjecture that this may be a countermeasure for
memory safety such that the LVP will not learn values of
pointers. That is, with the M3 being a 64-bit CPU, pointers
are 8 bytes wide. Furthermore, on 64-bit macOS executables,
any virtual address below 0x100,000,000 is invalid [3].2

Striding Load Values. To test if the LVP learns load values
that change with a fixed stride, we insert a subroutine in List-
ing 1. Between Line 3 where we randomize the access order
and Line 4’s flushing of all cache lines in the mem buffer, we
write values to mem incrementing from 0 in the order obtained
from Line 3. As before with load widths, we repeat measur-
ing but with striding load values on the right of Figure 5, and
compare it with constant load values on the left.
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Figure 5: Runtime when the M3 CPU loads values that stride, instead of the
same value on each load. Our control continues to load random values.

Here, we observe that the runtime as the number of loads
increases resembles the trend when the load values are ran-
dom. As such, we conclude that Apple’s implementation of
the LVP trains only on constants.
Loop Unrolling. Without modifying the source code from
Listing 1, we direct the compiler to fully unroll Lines 6-7 to

2We note however that this strategy is not entirely safe, as LVI-NULL [53]
demonstrates transient execution attacks using address zero.

exactly ITERS different load instructions for each value of
ITERS (10 to 500, in increments of 10). This causes a load
placed at a particular instruction address to be executed only
once per trial, as opposed to tens or hundreds of times. We plot
the runtimes of our control and experiment on the unrolled
binary to the right of Figure 6, and contrast them with the
original loop on the left.
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Figure 6: Effect of loop unrolling on LVP activation. We attribute the longer
latency on the unrolled plot to the much larger binary size, as more instruc-
tions must be fetched by the CPU.

Notably, unrolling the loop causes the runtime on constant
load values to scale nearly identically to our control with ran-
dom load values, indicating that the LVP does not activate.
Hence, we conclude that LVP trains with local scope (presum-
ably with entries tagged with the instruction address) instead
of training on a global window of recent load values.
Simultaneous Prediction Capacity. Lastly, after noticing
the LVP’s local scope, we seek to determine how many distinct
load instructions the LVP can track and activate on. To that
aim, we create several copies of the mem buffer from Listing 1,
shuffling the access order individually. For the traversing loop
in Lines 6-7, we copy the load instruction in Line 7 such that
each line traverses a distinct clone of mem, and we also insert
n dummy instructions between these loads to test if the LVP’s
capacity is dependent on the instruction address bits (akin
to set-associative caches). Then, we divide the timestamp
in Line 8 by the number of load instructions to record the
average traversal time. For each value of n, we increase the
number of copies that simultaneously train the LVP until we
observe the experiment’s average traversal time spike towards
that of the control (indicating that the LVP failed to predict at
least one copy). We plot the results in Figure 7.
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Figure 7: Maximum number of distinct load instructions the LVP can support
before a timing spike is observed, depending on the instruction distance
between them. In the 64-bit Arm ISA, every instruction is 4B wide.

Interestingly, we observe that the maximum number of
copies the LVP can accommodate is 72, but this also depends
on how far the load instructions are spaced apart. Rerunning
the experiment with ASLR disabled, we observe the same



result. Thus, we conjecture the LVP’s internal state cache may
be 4-way set-associative (as the LVP could always predict at
least four addresses regardless of the value of n) and uses a
hash function on the page offset bits to determine the set.3

4.3 Measuring Mispredicted Load Values

Moving away from LVP-induced timing differences, we now
investigate if the LVP uses its prediction to compute specula-
tively on arbitrary downstream instructions. Listing 2 outlines
our experiment for measuring LVP speculation.

1 uint8_t gadget(int offset) {
2 return *(mem + offset);
3 }
4 // LVP training on load value foo
5 int offsets[ITERS] = getOffsets(mem, ITERS);
6 shuffle(offsets);
7 uint8_t foo = 0xca, bar = 0xfe, val = 0;
8 memset(mem, foo, MEM_SIZE);
9 for (int i = 0; i < ITERS; ++i)

10 gadget(offsets[i]);
11 // Make LVP mispredict bar as foo
12 memset(mem, bar, MEM_SIZE);
13 flushBuffer(mem);
14 val = gadget(offsets[0]);
15 frTransmit(val);
16 return frRecv();

Listing 2: Code snippet for measuring mispredictions. We train the LVP on
the load value foo, but then change the architectural value to bar. We cause
the LVP to still operate on foo (which is now stale).

Gadget Overview. First, we focus on the gadget function in
Lines 1-3, where we perform loads from the mem via a function
that is never inlined. This ensures that the LVP-training load
in Line 2 is always at the same instruction address, following
our results from Section 4.2 which suggest PC-tagging. Here,
the mem buffer is identical to our experiments in Section 4.1.
Training the LVP. Subsequently, Lines 4-10 constitute
the training routine. After we initialize and shuffle the order
of accesses into mem in Lines 5 and 6, we declare values for
the foo, bar, and val variables in Line 7. Then, we call the
memset function on the buffer with foo in Line 8, such that
all loads from mem will result in foo being returned. Indeed,
this is how we train the LVP in Lines 9 and 10 by invoking
the gadget to load foo several times, where we control the
number of training loads with the ITERS parameter.
Misprediction with Stale Load Values. Next, we induce
a misprediction in Lines 11-16. We call memset again but
with the value bar in Line 12, changing the architectural load
value from anywhere in the mem buffer to bar. Line 13, as
before, flushes the whole buffer to induce the LVP to use
its prediction instead of waiting for the load to resolve from

3Our attacks use the same instruction address to train and exploit the LVP.
We leave the reverse engineering of this hash function to future work.

memory4. We then call the gadget just once in Line 14.
This time when executing gadget, the CPU cannot retrieve

the data for the load quickly, since it misses the cache. As the
LVP has observed foo being returned from the load instruc-
tion in Line 2 before, the LVP uses foo as its prediction. Thus,
gadget returns foo to be stored in the val variable in Line
14, and then in Line 15 we use FLUSH+RELOAD to encode
val into the cache state such that we can recover it later. Next,
at some later point, the CPU realizes the correct load value
in Line 2 is bar, when it arrives from main memory. Hence,
it rolls back the incorrect execution, returning bar into val
and then encoding bar into the cache. Finally, in Line 16, we
recover the encoded values, where we observe both foo (the
stale load value) in addition to bar. See Figure 8.

foo foo foo foo foo foo

bar
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Access Order
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mem Content

mem Content
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Architectural
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Figure 8: Graphical summary of the code in Listing 2. The LVP’s misspec-
ulation and subsequent rollback causes foo to be transmitted, followed by
bar (indicated by the satellite icons).

Measuring the Activation Threshold. With the above gad-
get, our initial goal is to observe mispredictions reliably. Thus,
we seek to identify how many training loads are necessary
on the M3’s P-cores. We vary the ITERS from 10 to 400 in
increments of 2. For each value of ITERS, we run the code
in Listing 2 1,000 times and plot the number of times we ob-
serve foo (the stale load value from the LVP) over the covert
channel. Figure 9 plots the resulting misprediction counts.

0 50 100 150 200 250 300 350 400
Training Loads

0
200
400
600
800

1000

LV
P 

Ac
tiv

at
io

ns

Figure 9: Effect of the number of training loads on the number of observed
LVP activations with the stale load value (out of 1000).

We observe three spikes of activity before achieving reli-
able mispredictions. The first spike occurs around 60 loads,
where the LVP activates about 25%. The second and third
spikes occur around 120 and 180 loads respectively, with ap-
proximately 50% activation rate. Finally, past 240 loads, we
observe activations with near-perfect reliability. Thus, in sub-
sequent experiments, we train the LVP on 250 loads. Given
that the previous spikes all occur around multiples of 60, we
conjecture that the Apple LVP prefers training loads that are
multiples of 60 until 240 loads, at which point it builds enough
confidence to activate reliably regardless of training length.

4To rule out the effects of predictive store-to-load forwarding, this flush
operation is serializing, writing the stores from memset back to main memory.



Furthermore, above 240 loads, we observe that LVP activa-
tions are reliable even when thrashing the cache on all cores,
leading us to conjecture that value-prediction state is stored in
a dedicated microarchitectural buffer instead of cache lines.
Measuring State Persistence. Suppose we insert extra
instructions between Lines 11 and 12 of Listing 2. Then,
these instructions execute after LVP training completes, but
before we run gadget once more to make the LVP mispredict.
Hence, they allow us to test for conditions that cause the LVP’s
internal state to either persist or attenuate. Thus, between
Lines 11 and 12, we insert a busy-waiting loop of increasing
duration to test for temporal conditions (such as a time-to-live
field). In tandem, we test for the LVP’s persistence with and
without memory-intensive workloads, where for the latter we
run stress-ng’s vm workload concurrently. We measure the
number of mispredictions out of 100 trials in Figure 10.
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Figure 10: Number of observed LVP mispredictions when busy-waiting
between training and misprediction, with and without a memory-intensive
workload running on the same CPU core.

Observing Figure 10, we obtain reliable LVP activations
regardless of the presence of stressors. However, the plots
diverge at 10 ms, where the intensive load/store activity over
time seemingly causes the activations to halve at 200 ms and
decrease to one-tenth at 1 s. On the other hand, the LVP retains
its internal state in the absence of stressors even after one-
second busy waits (which, given the M3’s peak frequency of
4.05 GHz [50], is more than four billion cycles). From this, we
hypothesize that the LVP’s state does not readily expire, but
can be overwritten by memory activity on the CPU core over
time. Furthermore, repeating this experiment with sending
non-maskable interrupts instead of stress-ng, we identify that
the LVP state is resilient to them after observing identical
results to Figure 10 (Blue). On the other hand, if we replace
the busy-wait with sleep to induce macOS to ‘park’ the CPU
core in a low-power state, we observe that this resets the LVP
state, resulting in no activations.
Measuring the Speculation Depth. Similarly to before,
suppose we insert instructions between Lines 14 and 15 of
Listing 2. During misprediction, the LVP transiently puts foo
into the val variable in Line 14, and then transmits it over
FLUSH+RELOAD in Line 15. Therefore, the inserted instruc-
tions become executed in the speculation window, allowing us
to measure how long the LVP will compute on the predicted
load value when the CPU’s load target misses the cache. This
time, we insert dummy mul instructions to keep multiplying
the load value by 1 (in a data-dependent manner). We vary
the number of mul instructions from 0 to 150 in increments of

5, and record the number of mispredictions out of 100 trials.
In addition, we test for the LVP’s speculation depth when the
CPU’s load target is cached by omitting Line 13 of Listing 2.
We plot both speculation depths in Figure 11.
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Figure 11: Number of observed LVP mispredictions when extra mul instruc-
tions are inserted between the speculative load and covert channel transmis-
sion. The speculation window is much larger when the load target is flushed.

Indeed, we observe the speculation window is much longer
when the architectural load misses the cache, in which case
we continue to observe LVP mispredictions up to 110 mul
instructions. On the other hand, while the LVP still activates
when the architectural load value is cached, we stop observing
the stale load value being transmitted speculatively past 10
muls. Given Apple documentation stating that each mul takes
3 cycles [4], our results translate to speculation windows of
330 (for cache misses) and 30 (for hits) cycles.

4.4 Inducing Memory Safety Violations
In this subsection, we investigate the security implications of
LVP’s computation on stale load values, which we observed
in Section 4.3. Although the LVP does not predict arbitrary
64-bit values which could be pointers (cf. Section 4.2), we
show that the LVP is dangerous when coupled with layers of
indirection. That is, incorrect load values can be used to per-
form out-of-bounds reads throughout the address space, and
also to call functions that are never invoked in the program.
Reading Out of Bounds. As the LVP does not learn pointer
values, we aim to use the load value as an index into an
array of pointers. We introduce minor changes to the gadget
function of Listing 2 from Section 4.3, resulting in Listing 3.

1 uint8_t gadget(int offset, uint8_t *ptr) {
2 aop[foo] = ptr;
3 uint8_t val = *(mem + offset);
4 uint8_t *ptr = aop[val];
5 return *ptr;
6 }

Listing 3: Modified gadget function from Listing 2 that achieves 64-bit
out-of-bounds reads. The LVP’s stale load value causes the CPU to select the
wrong pointer and dereference it.

In Line 1, we make gadget accept a pointer argument in
addition to the offset into mem. Then, in Line 2, we insert
this pointer into index foo of the array of pointers aop. In
Line 3, we dereference mem + offset as before. Instead of
returning the load value, we use it as the index into aop in Line
4, retrieving a pointer. Finally, in Line 5, we dereference the



pointer and return the data at its address. Next, we show how
the modified gadget function interacts with aop in Figure 12.
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Figure 12: Graphical summary of our modified setup with indirection via an
array of pointers to test for out-of-bounds reads during LVP speculation.

Training Phase. During LVP training ( 1⃝ in Figure 12), we
fill mem with foo, and aop with the address of a dummy string.
We run gadget with ptr set to &dummy, such that Line 2 does
not change the contents of aop[foo]. Hence, when the LVP
retrieves foo as the load value from mem in Line 3, the dummy
string pointer is retrieved and dereferenced in Lines 4-5.
Misprediction Phase. Next, when we induce the mispre-
diction in 2⃝, we fill mem with bar and supply the address of
secret to gadget, via ptr. Hence, aop[foo] now contains
the secret pointer after Line 2. When the LVP activates in
Line 3 because mem is flushed and assigns the stale load value
foo to val instead of bar, this causes the secret pointer to
be chosen and dereferenced in Lines 4-5. That is, gadget
transiently returns data from the secret string, which then gets
transmitted over FLUSH+RELOAD in 3⃝. However, the CPU
will eventually realize the correct load value is bar and replay
the load into mem, as shown in 4⃝. This results in the retrieval
and transmission of the dummy string as well in 5⃝, causing
us to receive two values over FLUSH+RELOAD. Finally, since
we know the dummy string’s content, we can simply filter out
the value corresponding to it to recover secret.
Results. Using 250 training loads as in Section 4.3, we
perform the above setup to read the secret string for 100 tri-
als. This results in mean and median accuracies of 0.97 and
1.00 (respectively) and throughput of 210,526 bits per second,
demonstrating that the LVP can speculate into incorrect (and
unsafe) data flows quite efficiently. Next, going beyond se-
crets in the current address space, we test for collisions in LVP
state and LVP-induced memory safety violations across secu-
rity boundaries in Appendix B. Our results indicate the LVP
employs tagging using all instruction address bits and process
ID, precluding its state from carrying over across processes.
Moreover, after training the LVP in userspace, we observe
that attempts to read kernel addresses are unsuccessful.
LVP in the macOS Kernel. One address space where out-of-
bounds reads are particularly dangerous is that of the kernel.
Thus, we ported our gadget from Listing 3 and Figure 12 into
macOS’s kernel space. We implement this as a kernel exten-

sion, wherein the training and misprediction phases can be
invoked from a userspace driver program via ioctl syscalls.
Remarkably, the LVP functions similarly in kernel-space: re-
peating the experiment to read a secret string (this time in
kernel memory), we observe mean and median accuracies
of 0.94 and 1.00 and throughput of 161,999 bits per second.
While our scenario assumes the existence of suitable gadgets
for LVP training in kernel space, we show that the a priori
implications of in-kernel LVP activations are formidable.

Branching to Rogue Functions. We modify the out-of-
bounds read experiment to determine if the LVP will also
speculate into incorrect control flows. Firstly, we declare aop
to hold function pointers instead of data pointers. Secondly,
we replace Line 5 of Listing 3 with a call to the selected func-
tion pointer from aop, branching execution into the function’s
entry point. Thirdly, we replace the secret and dummy strings
with secret and dummy functions with the same function sig-
nature (arguments and return type), as we show in Figure 13.
This diagram takes the place of the bottom half of Figure 12.

Mispredict ArchitecturalSpec. (LVP) barfoo

&secretFn &dummyFn &dummyFn &dummyFnaop Content

void secretFn() {
  frTransmit(secret);
}

void dummyFn() {
  return;
}

Figure 13: Modified lower half of Figure 12 to cause the stale load value foo
to retrieve a function pointer and branch to it.

The secret function now contains the FLUSH+RELOAD
transmission with a secret value. In contrast, the dummy func-
tion just returns. For our evaluation, we use 250 training loads
and 100 trials as before, but measure how many times we
correctly received the secret value and how many times the
routine can be executed in one second. We receive the secret
all 100 times and after a median of 0.000392 seconds: hence,
our rogue function gadget can be run about 2,551 times per
second. Therefore, we conclude that the LVP is also effective
at diverting control flow under speculation.

5 Attacking Safari with the LVP

In this section, we study the security implications of the LVP
on a major component of the Apple ecosystem: the Safari
web browser and its underlying browser engine, named We-
bKit. Since JavaScript is a weakly typed language, WebKit
is responsible for checking types of variables under the hood
in order to determine the operations it can perform on the
variable. By causing the LVP to mispredict the type, we or-
chestrate FLOP-Data, an end-to-end attack capable of reading
sensitive data from a cross-origin target webpage.



5.1 Value Prediction on Variable Types
We start our discussion of the LVP’s interaction with type
checking in WebKit by introducing the typing mechanism. In
WebKit, every JavaScript data structure starts with a header
data structure named JSCell. Figure 14 shows its layout.

typeVar Metadata backingStore optionalField

0 4 8 16    Byte Offset
Figure 14: Memory layout of the JSCell header.

We note that the type information of the data structure is
stored in the first 4 bytes of the JSCell. Therefore, for every
object operation, WebKit starts executing the pseudocode in
Listing 4, where it first performs a 4-byte load to the start of
the JSCell to retrieve typeVar on Line 1.

1 uint32_t inpType = input->typeVar;
2 if (inpType != EXPECTED_TYPE)
3 raiseException();
4 doSomething(input->backingStore);
5 doSomething(input->optionalField);

Listing 4: Pseudocode for the type checking procedure for JavaScript data
structures in WebKit. The highlighted load trains the LVP.

Then, in Line 2, it compares the load value typeVar to the
type that the code is expecting: if there is a mismatch, then
the code aborts, throwing an exception in Line 3. That is, only
after the type check passes will the code retrieve informa-
tion from the rest of the JSCell such as backingStore and
optionalField, as shown in Lines 4-5.
Considering LVP Activation Criteria. Now, we reexamine
Line 1 of Listing 4 in the context of the LVP. As this is a
4-byte load, repeatedly running this code using an input of
type EXPECTED_TYPE has the potential to train the LVP such
that it predicts the load value will be EXPECTED_TYPE. That
is, the edge case from Section 4.2 where the LVP does not
predict arbitrary values for 8-byte loads does not apply.

Moreover, we reflect on our findings from Section 4.3: if
we run Listing 4 again but with an input of a different type,
the LVP may still use the (now stale) predicted load value
for Line 1 and proceed to Line 2. The key insight is that the
LVP’s prediction will now cause the type check in Line 2 to
incorrectly pass, resulting in the CPU proceeding to operate
on the data structure (Lines 4-5). This paves the way for a
speculative type confusion attack, which we now describe.

However, we also know from Section 4.3 that the load in
Line 1 must miss the cache during the misprediction run for a
prolonged speculation window that can reach Lines 4-5. In
contrast, when execution reaches those lines, backingStore
and/or optionalField from Figure 14 must be cached for
speculation to continue into the doSomething subroutines.
This necessitates the JSCell header of the attacking data
structure to be split across two cache lines.

Finding a JSCell Across Cache Lines. The iLeakage
attack [25] demonstrated that Intl.Locale objects can be
allocated such that the typeVar and backingStore variables
from Figure 14 are on different cache lines. However, Ap-
ple has since introduced a patch to WebKit [29] that ensures
the two variables are always cache line-aligned, necessitat-
ing a novel attack vector. Accordingly, we turn our attention
to the optionalField of the JSCell, which is only used
by a small subset of JavaScript data structures compared to
backingStore. It is this subset wherein we focus on typed ar-
rays, a special class of arrays in JavaScript designed to handle
raw binary data. We show their memory layout in Figure 15.
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0   Byte Offset           4                8           16                24…41

const typedArr = new Uint8Array([1, 2, 3]);
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Figure 15: Memory layout of JavaScript typed arrays in WebKit. The
Uint8Array (a class of typed array) declaration at the top of the figure pro-
duces this layout with a 3-byte buffer holding the data.

We observe that typed arrays leave the backingStore
(denoted by BS) unused. Instead, the next variable (rawBuf)
stores the address to their raw buffers. Furthermore, we ob-
serve that WebKit seldom allocates a typed array such that
Type, Misc., and BS are on one cache line, but rawBuf and
some other metadata are on another cache line as shown in
Figure 15. Thus, we can use typed arrays as the attacking data
structure for speculative type confusion, since passing one to
WebKit may activate the LVP when Type misses the cache.

5.2 Speculative Type Confusion
As an adversary, our end goal is to achieve a 64-bit read
under speculation, which would allow us to recover secrets
from anywhere in WebKit’s address space. In this subsection,
we describe the exploit chain that begins from confusing a
malicious typed array as another data structure and ends at
retrieving data from a pointer which we control.
Target for Type Confusion. First, we would like the CPU
to parse a typed array as something else due to the LVP
mispredicting. However, this other data structure cannot use
BS because BS for our malicious typed array would be flushed
from the cache, preventing speculation from continuing. We
find our candidate from an optimization used by WebKit:
JavaScript objects that contain only a small number of member
variables, or properties. While most objects use BS, WebKit
stores small objects inline in memory, using fields after BS
to hold the properties. We juxtapose the memory layouts of
typed arrays and small objects in Figure 16.

We observe that the attacker can modify the small object’s
prop variable by changing the properties contained by that
object. Furthermore, prop overlaps with rawBuf of the typed
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Figure 16: Memory layout of a small JavaScript object with an inline property
(Top) and typed array split across cache lines (Bottom).

array in the memory layout. However, even though prop is
64 bits wide, we observe that the attacker cannot control all
64 bits of it due to WebKit’s sandboxing measures. That is, to
prevent attacker-controlled JavaScript values from resembling
pointers, WebKit poisons the values when storing them in
memory such that they would never represent valid addresses.
Therefore, a level of indirection is necessary.
Indirection with Strings. Consider the two JavaScript data
structures presented in Figure 17. The top object objWithStr
is a small object from Figure 16 (top), modified to contain a
string. The bottom object evil is a typed array. Eventually,
we would like the CPU to misinterpret evil as objWithStr
under speculation, due to type confusion.
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Type=SmallObj Misc. BS prop
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const objWithStr = {prop: “hello”};

const evil = new Uint8Array([0x50,0x42,
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Figure 17: Memory layout of a small JavaScript object with a string
(objWithStr) and typed array containing a malicious payload designed
to imitate the string (evil). In this figure, the string’s backing store (pointed
to by StrData) is not shown for simplicity. We note that the Apple M3 is a
little-endian CPU, hence we write the raw bytes in reverse order.

We augment objWithStr with a string after observing that
strings do not contain poisoned values. Furthermore, we ob-
serve that rawBuf of evil aligns in memory with the string’s
metadata, which prop now points to. Akin to any other data
structure, operations on strings are preceded by a type check.
Therefore, for the CPU to operate on rawBuf under specula-
tion, we must fill rawBuf with a payload to imitate the string’s
metadata. Forging a data structure is usually a difficult task,
as WebKit attempts to randomizes the numerical values cor-
responding to each data structure’s type. However, as builtin
types (e.g., strings) are allocated in a fixed order, we observe
that the numeric type assigned to strings is always 0x4250,
and the miscellaneous data value in byte offsets 4-7 constantly
equals (0x80200). We write these values into evil, causing
rawBuf to resemble the first 8 bytes of a string.

Next, we focus on the StrData variable of the string object.
This is a 64-bit pointer to the string’s underlying data structure,
holding the string’s length and character buffer (not shown
for simplicity). Hence, by writing fakeStrData into rawBuf,
it appears that we can create a fake 64-bit pointer to a string
data structure. Despite this, we observe that WebKit does
not expose the values from dereferencing fakeStrData to
JavaScript code, as it instead parses the string’s data structure
for fields such as length, character buffer address, etc. This
precludes our code gadget from directly obtaining 64-bit reads
via fakeStrData, requiring us to examine the string data
structure that StrData typically points to.
JavaScript String Layout. We describe the full memory
layout of a JavaScript string object in Figure 18.
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Figure 18: The full memory layout of the JavaScript string “hello”, which is
the .prop property of the objWithStr object in Figure 17 above.

The underlying data includes the length and charPtr,
which points to the first character. When indexing into a string
from JavaScript, the index is checked against length. If it is
in-bounds, the index is added to charPtr, and the CPU loads
from the resulting address to retrieve a character to JavaScript
code. Hence, if WebKit dereferences an attacker-controlled
value instead of charPtr, this immediately leads to our end
goal of 64-bit reads. To that aim, we assume there is a secret at
memory address addr and there exists an attacker-controlled
buffer. As the miscellaneous values in Figure 18 surround-
ing length and charPtr are constants, we can make this
buffer resemble the string’s underlying data simply by writing
these constants. Furthermore, we can write a large number
for length such that any index would pass the check and
write addr in place of charPtr. However, just as StrData
points to this underlying data in Figure 18, we must write the
address of this buffer in place of fakeStrData in Figure 17.
As JavaScript does not have pointers, we now face a challenge
to sidestep these sandboxing measures.
Spraying Backing Stores on the Heap. We address this
problem using, rather ironically, another JavaScript string.
First, we make the insight that the string’s characters serve
as an attacker-controlled contiguous buffer, where we can en-
code our payload from above. Next, strings can scale to mas-
sive lengths in WebKit, such as 1 GiB. Therefore, we repeat
our payload to reach that length, effectively spraying multiple
copies of the forged underlying data on the heap. Finally, we
observe that declaring such a large string forces WebKit to
allocate a new heap region. Remarkably, the new allocation
consistently lands a couple bytes after 0x400000000, making
our spray technique extremely reliable. That is, we can replace
fakeStrData in Figure 17’s evil with 0x400000100 and ex-



pect this address to point to one of our sprayed instances. This
completes our data structures for speculative type confusion,
which we present in Figure 19.
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Figure 19: Our completed speculative type confusion primitive.

5.3 End-to-end Attack Overview
Using our data structures from Figure 19, we describe the
remaining steps to orchestrate our attack end-to-end. First, we
introduce our gadget in Listing 5.

1 function gadget(input, index) {
2 const secret = input.prop.charCodeAt(index);
3 channel.transmit(secret);
4 }

Listing 5: Our gadget that operates on the data structures in Figure 19 to
achieve transient 64-bit reads via speculative type confusion in Line 2.

Gadget Overview. We train the LVP on Listing 5 with
objWithStr, whose layout is represented at the top of each
pair of memory diagrams in Figure 19, as the input argu-
ment. In Line 2 (highlighted), we retrieve characters using the
charCodeAt function of objWithStr’s string (i.e., its .prop
property) several times with an in-bounds index, resulting
in WebKit reading from charPtr. We then provide evil as
input and an arbitrary index to Listing 5, located at the bot-
tom of each pair in Figure 19. Then, we reason about how the
CPU (and thus LVP) reacts to Line 2.
Type-confusing evil as objWithStr. 1⃝ of Figure 19
shows the speculative type confusion, where the LVP causes
the CPU to operate on evil while thinking the input is
objWithStr because evil’s type is flushed. As evil’s
rawBuf is cached, the CPU continues to speculate and in-
terprets rawBuf as objWithStr’s prop variable. Thus, ex-
ecution proceeds to 2⃝, where the CPU first checks if it is
computing on a string such that it can eventually retrieve a
character. The type check on rawBuf passes as string, since

we have written 0x4250 and 0x80200 to type and misc. Sub-
sequently, the CPU interprets 0x400000100 as a pointer (in
place of strData) and proceeds by dereferencing it.
Achieving Transient 64-bit Reads. We now revisit the
heap spray at 3⃝, where one instance of our forged string
data, encoded inside a 1 GiB-long JavaScript string, is located
at 0x400000100. The CPU, thinking this data structure is a
string, attempts to retrieve a character at index. As we have
written the maximum possible value for length, we sidestep
this check. Finally, the CPU interprets addr as charPtr, spec-
ulatively dereferencing the sum of addr+index, and returns
the data to Line 2 under speculation. Finally, Line 3 leaks the
data by encoding it in a microarchitectural covert channel. We
describe the details of this covert channel and the full attack
code implementation in Appendix C.

5.4 Evaluation
We first benchmark our 64-bit out-of-bounds read primitive,
which we name FLOP-Data (a combination of the LVP and its
ability to leak data). We host our attack code on a web server
that is not publicly accessible. Then, we use FLOP-Data to
read a buffer that we initialize with known data over 10 trials
on a MacBook Pro with M3 CPU and 8 GB of RAM. Here,
we observe a median accuracy of 89.58% and throughput of
0.492 bits per second. Subsequently, we evaluate the dangers
of FLOP-Data on popular real-world websites. In these case
studies, we assume the target user is authenticated into the
target webpage via cookies stored by Safari.
Bringing Secrets Into the Address Space. Now that we can
read from anywhere in the address space, we would like addr
to point to meaningful targets, such as sensitive data from
another webpage. As addr is a virtual address, we must cause
the Safari process that renders the attacker’s webpage to also
render the target webpage. Prior work [25] reported that the
window.open API in JavaScript achieves this, and also com-
bined window.open with the onmouseover event listener to
open the target page without triggering pop-up blockers when
the target user puts their mouse cursor anywhere on the at-
tacker’s webpage. We confirm that both observations still hold
true on the latest version of Safari. Hence, we cause mouse
movement on our attacker webpage to call window.open with
the target page’s URL as an argument, such that secrets in the
target page become allocated in our address space.

Furthermore, we must ensure that addr probabilistically
points to those secrets. For large allocations such as webpage
DOMs, we observe that WebKit expands its heap at deter-
ministic addresses (such as 0x400000000 from Section 5.2)
and that it enforces memory alignment of ≥16 bytes. This
heavily reduces the entropy for a valid addr, oftentimes to
brute-forceable 16-bit search spaces.
Recovering Sensitive Data. We wrap up our evaluation by
showing FLOP-Data’s ability to leak secrets from several web
services. First, we notice that Google Maps’ Timeline page



tracks the locations the account owner has visited by default,
recovering an address in Figure 20 (Top). Next, we recover
the sender and subject of an email from the inbox of Proton
Mail, an end-to-end encrypted email service, in Figure 20
(Middle). Finally, we head to Apple’s own iCloud Calendar,
where we recover the name and location of a private event in
Figure 20 (Bottom).

Figure 20: Sensitive data recovered with FLOP-Data from Google Maps
Timeline (Top), Proton Mail’s inbox (Middle), and iCloud Calendar (Bottom).

6 Attacking Google Chrome with the LVP

In this section, we show that the LVP not only disrupts data
flow in practical end-to-end attacks, but also control flow
beyond our experiment in Section 4.4. We cause the CPU to
execute the wrong function under speculation when running
our WebAssembly gadget with Chrome, such that it treats a
64-bit integer as an address. Hence, we again achieve transient
64-bit reads to sensitive data throughout the address space.

6.1 WebAssembly Function Dispatch Table
First, we notice that Chrome prevents out-of-bounds reads for
JavaScript objects by caging them in a 4 GiB memory region
and limiting all pointers within this region to 32 bits. How-
ever, we observe that WebAssembly code is not subject to this
caging restriction. Furthermore, we find that WebAssembly
supports an interface where code can insert functions into a
function dispatch table and subsequently invoke them by in-
dexing into the table. We examine Chrome’s implementation
of the function dispatch table in Figure 21.
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1
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Figure 21: Memory layout of Chrome’s function dispatch table.

Dispatch Table Overview. In Figure 21, each table index
has a data structure funcData. funcData is comprised of
entryPt, a code pointer to the function’s entry point, miscel-
laneous metadata, and sig, a 32-bit value representing the
function’s signature (i.e., arguments and return type). Next,
we show how functions are indirectly called in Listing 6.

1 function call(args, int index) {
2 funcData f = dispatchTable[index];
3 uint32_t funcSig = f->sig;
4 if (funcSig != EXPECTED_SIG)
5 raiseException();
6 setupArguments(args);
7 f->entryPt();
8 }

Listing 6: Pseudocode for calling a function using the WebAssembly function
dispatch table in Google Chrome. The highlighted loads train the LVP.

WebAssembly code can call functions from the dispatch
table by specifying a 32-bit index in Line 1, and args, the
arguments for the function. Line 2 indexes into the table,
retrieving the funcData at the index. In Line 3, the CPU per-
forms a 32-bit load to obtain sig. Line 4 compares the result
to EXPECTED_SIG, a unique value encoding the function’s
expected argument and return types. If there is a mismatch,
Line 5 throws an exception to abort the code. Hence, Lines
4-5 safeguard the function at entryPt from being invoked
with the wrong arguments. If this check passes, Line 6 sets up
args and Line 7 branches to entryPt to execute the function.

6.2 Speculative Function Confusion
We recall our control-flow hijacking gadget from Section 4.4.
There, we used the LVP to mispredict a stale index into an
array of function pointers, thus transiently invoking the wrong
function. We note that the function dispatch table in Figure 21
is very similar, with it being an array of funcData rather than
pointers. Also, in Listing 6, we observe index is 32 bits and
therefore learnable by the LVP (cf. Section 4.2).

Therefore, if index is not cached in Line 2, the LVP may
activate on a stale prediction for index, leading the CPU to
retrieve the wrong funcData under speculation. While this
may seem to achieve our goal of invoking the wrong entryPt,
it also implies that the value of sig is incorrect compared to
what the code expects (EXPECTED_SIG) in Line 4. Unfortu-
nately, this causes control flow to head to the exception in
Line 5 instead of the wrong entryPt in Line 7.



Bypassing Signature Checks. However, we observe that
sig, like index, is 32 bits. Thus, we aim to redirect the control
flow one more time by training the LVP to mispredict on both
index and sig. The loads for index and sig are at different
instruction addresses, hence the LVP does not mix training
state between them (cf. Section 4.2).

This requires sig not to be cached, such that the LVP will
predict its value is EXPECTED_SIG and sidestep the argument
check. However, if entryPt is also not cached, speculation
will terminate in Line 7. Hence, we need to find an instance
of funcData whose entryPt and sig are on different cache
lines, and evict just the line containing sig. Fortunately, we
discover such an instance by brute-forcing 32 table indices.
This allows us to execute the wrong function on the wrong
arguments, as we overview in Figure 22.

entryPt Misc. sig

0   Bytes    8              12            16

entryPt Misc. sig0

1

Index           funcData

Architectural

Speculative

Flushed

func

wrongFunc

Cache Line Boundary

1

2 3
Figure 22: Our attack routine that causes two LVP mispredictions, disrupting
control flow towards an incorrect function and also with the wrong arguments.

Hijacking Control Flow. As shown in Figure 22, we assume
that the funcData split across cache lines is located at table
index 1. We further assume that this funcData’s sig is not
cached, as well as the index argument to Listing 6. Now, we
invoke the call function with 0 for the index argument. In
1⃝ of Figure 22, the LVP first activates on Line 2 due to the
cache miss on index. The LVP mispredicts index to be 1,
retrieving the funcData of wrongFunc instead of func.

In 2⃝, the CPU runs Line 3 to retrieve the signature. How-
ever, since this is also a cache miss, the LVP activates again,
mispredicting that the signature will be that of func. This
circumvents speculation from heading to the exception in
Line 5. Therefore, in Line 6, we cause the CPU to set up
func’s arguments for wrongFunc instead. Then, since the
wrong entryPt remains cached in Line 7, the CPU incor-
rectly diverts control flow to wrongFunc in 3⃝.
Confusing Data as Addresses. With the ability to transiently
call rogue functions with unchecked argument types, we in-
vestigate the arguments that WebAssembly functions can take.
Due to sandboxing in the browser, WebAssembly does not
support pointers. However, it does support references to valid
structs in memory. Although the reference is not attacker-
controllable, we observe that Chrome remarkably implements
it as a 64-bit pointer. Hence, we use struct references in lieu
of pointers, aiming to provide an attacker-controlled 64-bit
integer to a WebAssembly function that expects a struct
reference. To that aim, we introduce Listing 7.

We first consider the struct in Line 1 that Chrome passes
as a 64-bit pointer. Accessing the data variable dereferences

1 struct readType { uint8_t data; }
2 function func(uint64_t arg) { return; }
3 function wrongFunc(struct readType* arg) {
4 uint8_t readVal = arg->data;
5 channel.transmit(readVal);
6 }

Listing 7: Pseudocode for func and wrongFunc from Figure 22. We aim to
run wrongFunc on a 64-bit integer, causing the CPU to treat it as a pointer.

that pointer, returning data at the struct’s address. Now, we
consider the func and wrongFunc functions’ implementation
from Figure 22. We would like to run wrongFunc instead of
func using func’s 64-bit integer argument, causing the CPU
to confuse it with the 64-bit pointer to struct.
Function Implementations. func takes a 64-bit integer,
but just returns, as shown in Line 2. In contrast, wrongFunc
retrieves the data at the struct into readVal in Line 4, caus-
ing Chrome to perform a 64-bit pointer dereference. Then,
in Line 5, wrongFunc uses a timer-resilient covert channel to
transmit readVal, whose details we describe in Appendix D.
Therefore, if we call func with a 64-bit integer but the CPU
instead executes wrongFunc due to the LVP, the CPU will
treat the integer as an address, and leak the data at that address
through the cache. We name this primitive FLOP-Control, and
describe the full implementation in Appendix E.

6.3 Evaluation

We first benchmark FLOP-Control by causing addr to point
to a buffer we have initialized with known content. Next, we
put Listing 7 on a non-publicly accessible web server and
attempt to read the buffer for 10 trials using an M3 MacBook
Pro with 8 GB of RAM. We report a median accuracy of
80.90% and throughput of 0.30 bits per second.
Locating Target Websites. Next, we would like addr
to point to secrets from a target webpage. To do so, we
must induce Chrome to render the target webpage in the
attacker’s address space. However, Chrome enforces restric-
tions on which webpages can be co-rendered due to site isola-
tion [47]. Here, the attacker and target webpages are allowed
to share an address space only if their extended top-level
domains (eTLD) and the prefix before the eTLD are identi-
cal, a rule known as eTLD+1. An eTLD can be a traditional
top-level domain such as .com or .org in addition to ap-
proximately 15,000 domains on the Public Suffix List [36]
(PSL), which specifies domains under which users can cre-
ate their own sites, such as github.io. For this example,
the eTLD+1 rule prevents one Chrome process from render-
ing both attacker.github.io and target.github.io, as
well as attacker.org and target.org.

Therefore, we seek for webpages that satisfy three con-
ditions. Firstly, the webpage must not be on the PSL,
such that attacker.site.tld can share an address space



with target.site.tld (here, site is the common pre-
fix). Secondly, the webpage must allow users to host their
own JavaScript and WebAssembly on attacker.site.tld.
Thirdly, target.site.tld must render secrets. Once we
find such a target, we identify addr by running the attack in
reverse: that is, we confuse addresses as data. First, as be-
fore, we locate a dispatch table entry that is split across cache
lines. Then, by providing a 64-bit heap pointer to a function
that transmits a 64-bit integer over our covert channel, we
defeat ASLR from reading the pointer’s value. This process
takes approximately 30 seconds, constrained by our leakage
throughput. Finally, breaking ASLR reduces the entropy for
the secret’s addr to 12 bits, allowing us to brute-force it.
Attacking Square. We find our target for FLOP-Control
in the form of Square, a popular storefront service. The at-
tacker can insert arbitrary JavaScript and WebAssembly into
their storefront, which is hosted on attacker.square.site.
Remarkably, Square is not on the PSL. This allows the at-
tacker storefront to be co-rendered in Chrome with other store-
front domains5 by calling window.open with their URLs, as
demonstrated by prior work [1]. One such domain is the cus-
tomer accounts page6, which shows the target user’s saved
credit card information and address if they are authenticated
into the target storefront (see Figure 23 (Left)). As such, we
recover the page’s data in Figure 23 (Right).

Figure 23: (Left) UI elements from Square’s customer account page for a
storefront. (Right) Recovered last 4 credit card number digits, expiration date,
and billing address via FLOP-Control.

7 Mitigations

Now, we investigate how to mitigate the LVP-induced mem-
ory safety violations first introduced in Section 4.4 and
weaponized throughout Sections 5 and 6. To that aim, we
turn our attention to the Data Independent Timing (DIT) bit
present in Armv8.4-A ISA and newer [6], and when set in-
structs the CPU that the latency to execute certain instructions
should not correlate to the data in the operands.

Initially designed to protect constant-time code against
dangerous microarchitectural optimizations [5], DIT is both
readable and writable from unprivileged processes and is
tracked across context switches [19]. Thus, changing the DIT
bit for one process does not affect its value for other processes.
DIT Interactions with the LVP. With DIT already dis-
abling data-dependent prefetching on the M3 [12], we now

5Square storefronts are generally hosted at storename.square.site.
6For each storefront, the customer account page is located at

storename.square.site/s/customer-account.

investigate if DIT also disables the LVP. We repeat the exper-
iments of Section 4.1, setting the DIT bit before running any
instructions. On the M3 CPU’s P-cores, we no longer observe
a speedup on constant load values compared to random load
values. Subsequently, we also repeat the misprediction exper-
iment of Section 4.3. Here, we do not receive the stale load
value on the covert channel, regardless of how long we train
the LVP. Therefore, we conclude that setting the DIT bit in-
deed disables the LVP. Hence, we recommend that developers
patch their software to enable DIT on supported platforms,
especially for code regions handling secrets or are untrusted.

For web browsers, this would correspond to setting the DIT
bit when executing user-supplied JavaScript or WebAssembly,
and on sensitive DOM operations such as password fields. As
such, we patched Safari to set the DIT bit in the rendering
process and observed that such a mitigation results in an
overhead of 4.5% on the Speedometer 3.0 benchmark. In
addition, we observe the overhead in native environments is
even smaller, with 0.6% on average for our patched version
of the BYTE Unix benchmark.
Mitigations for Browsers. In Safari, our cross-origin leaks
of sensitive DOM data were possible due to WebKit render-
ing the attacker and target webpages in the same address
space. Safari lacks Site Isolation [47], which is implemented
in Chrome and mandates process isolation for webpages from
different origins. However, Site Isolation does not solve the
co-rendering problem completely due to corner cases, as we
observed with Square in Section 6.3.

Next, we consider countermeasures for each browser en-
gine. First, we suggest increasing the randomization entropy
for types and memory allocations in Safari, as the lack thereof
allowed us to create a fake string header and heap-spray the
underlying string data7. Then for Chrome, we suggest caging
the WebAssembly structs in a memory region, similarly to
what it already does with JavaScript objects. This would allow
references to them to be represented in base-relative offsets to
that region (e.g., 32 bits) instead of 64-bit pointers, precluding
an attacker from reading the whole address space8.

8 Conclusion and Future Work

In this paper, we demonstrate that recent Apple CPUs perform
load value prediction. After observing constant load values
from a specific instruction address, the LVP bypasses subse-
quent loads, forwarding the same value to younger dependent
instructions. This results in a speculation window that may
compute arbitrarily on incorrect data. Using indirection, we
show out-of-bounds addresses being read, the wrong function
being executed, and finally sensitive login-protected data be-
ing exfiltrated across websites in Safari and Chrome. Finally,
we identify that the LVP can be disabled via DIT.

7All types are stored in a sparse lookup table, and WebKit’s memory allo-
cation uses demand paging. Hence, we project the overhead to be negligible.

8The overhead is one addition, which is often just one CPU cycle.



On the other hand, we note that the DIT bit is not set (and
thus the LVP is enabled) in the macOS kernel, where in Sec-
tion 4.4 we demonstrated the possibility of in-kernel LVP
training and exploitation. However, as we were not able to
train the LVP across userspace / kernel boundary, to success-
fully exploit the LVP in a kernel environment, an attacker
must find three types of gadgets: training gadgets containing
loops of ≤32-bit loads, converter gadgets causing the wrong
load value to access a secret, and finally leak gadgets to ex-
filtrate the secret over covert channels. We leave the task of
creating tools for finding such gadgets, as well as creating
realistic LVP kernel exploits, to future work.
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9 Ethics Considerations

We describe our adherence to ethics guidelines while evaluat-
ing our attacks in Sections 5 and 6 and responsible disclosure.
Ethical Testing of Attacks. We own all devices used in our
experiments, and these devices are free of any sensitive user
data or personal information. These devices are only accessi-
ble to lab members, and are not exposed to unauthorized users.
For online accounts, all of the accounts involved in our attacks
are dummy accounts that we own, and are ensured not to con-
tain any sensitive information. To reduce the risk to unrelated
parties, we host the code for the attack on Safari (Section 5)
on a local web server that is not publicly accessible.

To overcome Site Isolation [47], the code of the attack on
Chrome (Section 6) has to be hosted in the same eTLD+1 do-
main as the target domain (cf. Section 6.3), which in our case
is a dummy Square storefront that does not sell anything. To
protect unrelated users that inadvertently visit our storefront,
we modify the attack code to check for a specific cookie value
and disable the attack if the value is not found. Consequently,
running the attack requires opening Chrome’s developer tools
and manually adding a cookie, and thus we ensure it will
not run on innocuous machines. Finally, we took down this
storefront immediately after finishing our evaluation.

Responsible Disclosure. We disclosed our results to Apple’s
Product Security Team on September 3, 2024 upon complet-
ing the initial version of the writeup. Apple has acknowledged
our writeup, and after an internal investigation, communicated
that they plan to address this in an upcoming security update
without sharing further details.

10 Open Science

We list all artifacts supporting this paper below. In adherence
to the open science policy, we publish all of them at https:
//zenodo.org/records/14680908.
1. Source code, instructions, and compilation scripts for LVP

reverse-engineering experiments (cf. Section 4)
2. Source code, binaries, instructions, and testing scripts for

a browser-based read primitive on Safari (cf. Section 5)
3. Source code, binaries, instructions, and testing scripts for

a browser-based read primitive on Chrome (cf. Section 6)
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A macOS Development Kernel Setup

After installing the development kernel, we add
enable_skstb=1 to the boot arguments for the kernel
to allow access to the kern.sched_thread_bind_cpu
API in sysctl for setting core affinity. Then, we use a
combination of kernel patches and extensions to allow
user-space access to the S3_2_c15_c0_0 system register
(core cycles) and the dc civac (cache flush) instruction.

B Extended Tests for Isolation

Having observed the LVP’s potential to cause memory safety
violations when mispredicting in one address space, we now
extend those experiments to determine which security bound-
aries the LVP can cross, and if we can cause collisions in the
LVP’s internal state that can lead to training and exploitation
happening in separate instructions or address spaces.
Testing for Instruction Address Aliasing. Earlier, in Sec-
tion 4.2, we have observed that the LVP trains with local
scope, failing to activate (and cause speedups) when the train-
ing loop is unrolled. We now test this more thoroughly using

the gadget function from Sections 4.3 and 4.4. More specifi-
cally, we first clone the gadget function. Our goal is to train
the LVP on the original gadget, then attempt to induce mis-
predictions when the cloned gadget executes.

To test for instruction address bits that are part of the page
offset, we use the C align attribute to cause the least signif-
icant bits to alias. For more significant bits, we mmap code
pages with the MAP_FIXED flag to map them at a specific
page-aligned virtual address. Then, at the same page offset
as the original gadget, we memcpy its instructions. These
approaches allow us to alias from 8 to 46 least significant bits.

As a control, we train and evaluate the LVP only on the
original gadget after implementing these changes, where we
observe reliable mispredictions with 250 training loads. How-
ever, when evaluating on the cloned gadget, we no longer
observe them regardless of the number of aliased bits. Hence,
we conclude that the LVP likely tags its internal state with the
full instruction address, precluding aliasing attacks.
Testing for Process Isolation and ASID Collisions. Now,
we aim to run the training and misprediction routines in dif-
ferent processes. To that aim, we map the mem buffer with the
MAP_SHARED flag such that writes to mem from one process
become visible to the other. We also call fork just before train-
ing, using the child process to train the LVP. Subsequently,
the parent runs the misprediction routine.

In a variant of this experiment, we keep forking until the
parent and child processes share the same Address Space
ID (ASID). An AArch64 feature, ASIDs are assigned by the
kernel and are used to tag page table base registers among
other microarchitectural features. ASIDs are either 8 or 16
bits wide, with the M3 implementing the former. Given that
the process limit for unprivileged users in macOS is 2,666, it
is straightforward to spawn at most 256 child processes and
achieve two processes with different PIDs but the same ASID.

Again, as controls, we both train and evaluate the LVP in
only the parent or child process and achieve reliable mispre-
dictions. Nonetheless, we do not observe any signal from
mispredictions when the two steps are performed in different
processes even when the ASIDs collide, indicating that the
LVP may employ PID-tagging in addition to PC-tagging.
Reading Kernel Addresses from Userspace. Finally, we
augment Section 4.4’s experiment with a kernel extension
that initializes a secret string in kernel memory and discloses
only its address. We then write that address into aop[foo]
before causing the LVP to mispredict to determine if LVP
activations from userspace instructions can also read kernel
memory. However, we do not receive any data over the covert
channel this time, possibly indicating that speculation may
terminate when loading from a kernel address.

C FLOP-Data Implementation Details

We present the full attack pseudocode that operates on Fig-
ure 19’s objWithStr and evil in Listing 8.

https://developer.chrome.com/blog/cross-origin-isolated-hr-timers/
https://developer.chrome.com/blog/cross-origin-isolated-hr-timers/


1 function gadget(input, index) {
2 const secret = input.prop.charCodeAt(index);
3 channel.transmit(secret);
4 }
5 // Data structure setup
6 const objWithStr = {prop: "hello"};
7 const fakeStr = 0x4250 || 0x80200 || 0x400000100;
8 let evil = undefined;
9 for (let i = 0; i < 13; i++)

10 evil = new Uint8Array(fakeStr);
11 const spray = CONST || 2^32-1 || addr || CONST;
12 const str1GB = spray.repeat(SPRAY_SIZE);
13 // Training phase
14 for (let i = 0; i < TRAIN_REPS; i++)
15 gadget(objWithStr, 0);
16 // Attack phase
17 partialEvict(evil);
18 if (false) gadget(evil, leakIndex);
19 return channel.receive();

Listing 8: Pseudocode in JavaScript for our speculative type confusion attack.
The || operator in Lines 9 and 13 represents concatenation.

Covert Channel Details. Once addr is transiently deref-
erenced after Line 2 and the data at addr is returned to the
secret variable, we must consider that WebKit restricts the
timer precision in JavaScript to 1 ms to deter fingerprinting
and side-channel attacks [37]. This necessitates a cache am-
plification primitive for us to recover the secret using a cache
covert channel. To that aim, we adapt a technique pioneered
by Google’s leaky.page attack [16] that amplifies one L1 data
cache hit or miss into tens of thousands by leveraging the re-
placement policy. This amplified covert channel is represented
as the channel variable in Line 3.
Data Structure Setup. Before invoking gadget, we ini-
tialize data structures for the attack. We declare objWithStr
on Line 6 of Listing 8, and craft our payload for the typed
array’s data on Line 7. Then, in Lines 8-10, we declare 13
typed arrays with this payload, but discard all but the last
declaration. Empirically, we observe that the 13th allocation
usually creates a typed array instance split across cache lines
for a newly spawned WebKit rendering process, and thus we
assign this one to the evil variable. Next, Lines 11-12 spray
the heap with the 1 GiB string that contains repeats of our
second payload, which resembles the underlying data of a
string. Line 11 forms the payload by sandwiching the largest
possible value for length, followed by addr, between the
miscellaneous constants. Line 12 constructs a new string that
repeats Line 11 until the result is 1 GiB long.
Training Phase. Recalling from Section 4.3 that 250 training
loads suffice to train the LVP reliably, we run the for-loop in
Lines 14-15 with the TRAIN_REPS variable set to 250. Within
the loop in Line 15, we repeatedly invoke gadget with 0 as
the index such that it is in bounds. Also, we give objWithStr
as the input, aiming to mistrain the LVP that the load value
for Type should be SmallObj.
Attack Phase. Subsequently, in Line 17, we evict the first 16

bytes of evil from the cache to force the LVP into specula-
tion, while keeping the rest cached for speculation to continue
to addr. But now, we reason about WebKit’s behavior after
transmitting secret. Eventually, the CPU will realize the
LVP’s prediction was incorrect and replay execution from 1⃝
of Figure 19. Because we provided evil, a typed array, to
code that was expecting objWithStr, WebKit will raise an
exception that prevents us from using our attack more than
once. To avoid this, we enclose the call to gadget on a mis-
predicted if-statement in Line 18 for speculative hiding [31].
This causes the exception to be raised under speculation, mak-
ing the incorrect execution invisible to Safari. Finally, Line
19 recovers the secret via the amplified covert channel.

D Cache Covert Channel Details

As a side-channel countermeasure, the timer resolution in
Chrome is restricted to 100 µs [60]. Hence, to recover secrets
encoded in the cache state, we require the ability to distin-
guish cache hits from misses even when the timer is orders
of magnitude coarser than the memory access latency. To
that aim, we adapt the timing amplification primitive from
[24] which uses speculation windows to cascade one cache
hit or miss into thousands of hits or misses, allowing us to
distinguish the two outcomes even with 100 µs resolution.

E FLOP-Control Implementation Details

We present the full attack pseudocode in Listing 9, which is
the extended version of Listing 7.

1 struct readType { uint8_t data; }
2 function func(uint64_t arg) { return; }
3 function wrongFunc(struct readType* arg) {
4 uint8_t readVal = arg->data;
5 channel.transmit(readVal);
6 }
7 // Training phase
8 uint64_t addr = &secret;
9 dispatchTable[1].set(func);

10 for (let i = 0; i < TRAIN_REPS; i++)
11 dispatchTable.call(addr, 1);
12 // Attack phase
13 dispatchTable[0].set(func);
14 dispatchTable[1].set(wrongFunc);
15 int idx = 0;
16 evict(idx, dispatchTable[1].sig);
17 dispatchTable.call(addr, idx);
18 return channel.receive();

Listing 9: Pseudocode for our control flow attack on Chrome, where a mis-
predicted table index and signature cause a 64-bit number to be treated as a
pointer. dispatchTable.call in the highlighted lines runs Listing 6.

Training Phase. We start by training the LVP on the table
index and function signature. In Line 8, we assume there
is a secret in our address space, but store its address as a



64-bit integer addr. In Line 9, we put func in table index 1
for LVP training, and we assume the set function updates
entryPt and sig. Then, in Lines 10-11, we call func through
the dispatch table, which causes Listing 6 to run. Hence, we
train the LVP to predict 1 for the table index, and func’s sig
value for the signature. We set the TRAIN_REPS parameter in
Line 10 to 250, since we observed in Section 4.3 that 250
training loads suffice for reliable mispredictions.
Attack Phase. Next, we reassign func to table index 0 in
Line 13. In Line 14, we cause index 1 to refer to wrongFunc
now. Then, in Line 15, we set a zeroed variable idx to be
passed as the dispatch table index. As shown in Figure 22, we
now assume that funcData at index 1 can be partially evicted.
Thus, in Line 16, we evict both idx and sig while keeping
the entry point to wrongFunc cached. We call the dispatch
table again in Line 17, where func should be called because
idx is 0. However, idx is not cached, causing the LVP to
mispredict the table index as 1 ( 1⃝ of Figure 22).

Under speculation, we sidestep the signature check from
the second LVP misprediction, due to wrongFunc’s sig also
not being cached. Therefore, the CPU regards addr as a valid
argument, diverting control flow into wrongFunc along with
addr. Then, wrongFunc treats addr as a struct reference,
loading the secret at addr and leaking it through the cache.
Subsequently, the CPU will realize it mispredicted the ta-
ble index and execute Listing 6 architecturally, calling func.
However, func just returns since it was provided a valid argu-
ment. Finally, the CPU runs Line 18, allowing us to retrieve
the secret over the covert channel.
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